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Abstract—When a cluster is scaled, a well-known hashing
technique called consistent hashing permits only a small number
of resources to be remapped. In a variety of settings, including
distributed databases, cloud infrastructures, and peer-to-peer
networks, it performs key functions as a data router and
load balancer. The literature does not offer a full review and
comparative assessment of consistent hashing algorithms, despite
the fact that research on these algorithms in relation to various
usage scenarios has been conducted. Consequently, in a rather
neutral setting, this study surveys and empirically compares the
most widely used consistent hashing algorithms for distributed
databases and cloud infrastructures, published from 1997 to 2021.
All algorithms have been implemented in Java and benchmarked
on common hardware to perform the comparison. We found
Jump, Anchor, and Dx to outmatch the other algorithms on all the
considered metrics. The measured values match the asymptotic
curves. Although, some asymptotically faster algorithms have
been shown to be slower in practice due to the number of memory
accesses.

Index Terms—Consistent hashing, load balancing.

I. INTRODUCTION

With an arbitrary amount of data as input, hashing algo-
rithms are deterministic operations that generate a fixed-length
result known as a hash value or digest. Hashing techniques
can be used in distributed systems to distribute objects among
nodes so that all nodes evenly divide the load, and clients can
quickly identify which node is in charge of a particular object.
By using the key to determine the index of the bucket where
the data is stored, hashing techniques can be used to build
associative arrays that enable data to be accessed using any
key rather than a numeric index. In a Distributed Hash Table
(DHT), each bucket might be located on a different node in
a computer network. Due to the necessity to move data to a
new node, dynamically enlarging a hash table like this usually
comes at a high cost and might result in unbalanced data
placement. Consistent hashing solutions have been created to
solve these problems and exhibit low reallocation costs (in
terms of data that need to be transferred to a different node).
The goal of this paper is to analyze the state of the art to
determine the most effective consistent hashing algorithm. For
this study, the most relevant consistent hashing algorithms
proposed since the first papers on this matter published by

Thaler and Ravishankar in 1996 [1] and by David Karger et
al. in 1997 [2] were considered, namely:

- Ring: by D. Karger et al. (1997) [2][3].
- Rendezvous: by Thaler and Ravishankar (1996) [1] [4].
- Jump: by Lamping and Veach (2014) [5].
- Multi-probe: by Appleton and O’Reilly (2015) [6].
- Maglev by D. E. Eisenbud (2016) [7].
- Anchor by Gal Mendelson et al. (2020) [8].
- Dx by Chaos Dong and Fang Wang (2021) [9].

An early survey of consistent hashing focusing on lookup
time was published online in 2018 [10]. Our goal is to consider
additional metrics, namely: memory usage, initialization
time, lookup time, resize time (when scaling the cluster),
balance (how well keys are spread among nodes), balance
after resize, and monotonicity (only the keys involved in
the resizing should be moved). Due to space constraints,
this paper only details the results about the lookup time and
memory usage. Moreover, for a detailed description of the
inner-working of each algorithm, the reader should refer to
the corresponding literature. The source code (Java) for all
the considered algorithms is publicly available [11].

A. Problem statement

Given a set of keys of size K and a set of buckets of
size N , we aim to distribute all the keys evenly among the
available buckets. A good hashing function will distribute the
keys evenly so that each node will get about K/N keys.
Unfortunately, simplistic approaches are not suitable in a
distributed scenario, because adding or removing a bucket
would require a remapping of almost all the keys. In particular,
suppose we identify the buckets with the nodes of a distributed
system and the keys with the resources stored in the system: it
is not desirable to redistribute all the resources when scaling
up or down the cluster. Ideally, only the keys stored in the
buckets involved in the resizing operation should be moved.
Consistent hashing algorithms aim to address this situation
and distribute the keys among the buckets so that adding or
removing a bucket will cause only K/N keys to move.



Fig. 1. Memory usage

II. BENCHMARKS

All benchmarks have been performed on the same hardware,
using an Intel® Core™ i7-1065G7 CPU with 4 cores and 8
threads, as well as 32GB of main memory. Each analyzed al-
gorithm leverages a collision-resistant non-cryptographic hash
function for mapping a key to a bucket [12]. We considered
several functions (XX [13], MD5 [14], and MURMUR3 [15]),
but since there are no significant differences [16], only the
results concerning XX will be presented. We repeated each
test for clusters with 10, 100, 1000 and 10000 nodes. The
asymptotic complexity of each algorithm is reported in Table
I (A denotes the number of overall nodes in a cluster, whereas
W denotes the number of working nodes; V is the number of
virtual nodes for each physical node in Ring, while M and P
are the number of positions in the lookup table for each node
in Maglev, and of probes in Multi-probe respectively).

TABLE I
ASYMPTOTIC COMPLEXITY

Memory usage Lookup time Resize time
Ring Θ(VW ) O(log2(VW )) O(V log2(VW ))
Rendezvous Θ(W ) Θ(W ) Θ(1)
Jump Θ(1) O(ln(W )) Θ(1)
Multi-probe Θ(W ) O(Plog2(W )) O(log2(W ))
Maglev Θ(MW ) Θ(1) Θ(MW )

Anchor Θ(A) O(ln( A
W

)2) Θ(1)

Dx Θ(A) O( A
W

) Θ(1)

Memory usage
Most of the algorithms (except Jump) keep an internal

data structure. For clusters with a considerable amount of
nodes, memory consumption can become a critical factor. As
expected, Ring and Maglev are the algorithms with the most
significant memory usage (Figure 1).

Lookup time
Concerning lookup time (Figure 2) Rendezvous is the slow-

est in this metric because it checks the key against every node

Fig. 2. Lookup time

Fig. 3. Lookup time (worst-case)

to find the best match. Multi-probe and Ring confirm their
asymptotic complexity. Although Jump should be slower than
Anchor and Dx, it performs faster because of less memory
accesses. In a worst-case scenario, using a dynamic cluster
where between 10% and 90% of the nodes are removed
(starting from 10000 nodes), the lookup time of Dx grows
quite rapidly, while Anchor is less affected (Figure 3).

III. CONCLUSIONS

This paper surveyed and compared the most relevant con-
sistent hashing algorithms for distributed databases and cloud
infrastructures, published between 1997 and 2021. Our re-
sults match the asymptotic curves, with Jump, Anchor, and
Dx producing the best results. Some asymptotically faster
algorithms have been shown to be slower in practice due to
the number of memory accesses. Jump is the best-performing
stateless algorithm, but it is unable to handle random failures.
Therefore, only Anchor and Dx might be suitable for real-life
environments.
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