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2 1 INTRODUCTION

Abstract

Surveillance cameras are nowadays pervasive elements in our cities: they act as a deterrent
against illegal activities or traffic violations, they help investigating crimes, and they can provide
useful traffic and people analytics. Collecting video streams from multiple sources, possibly in
real-time, poses a number of ethical, legal and technical challenges. As engineers we mainly
focus on the latter issue, leaving the first two to politicians and lawyers. On the one hand, we
recognize that the infrastructure needed to stream data needs to be sufficiently capable, robust
and scalable; on the other hand, we know that plentiful of raw processing power and a vast stor-
age capacity are required to analyze multiple video streams in real time and save the resulting
information. In this paper we aim attention at those technical issues and present an on-going
project focused at providing real-time information by means of a flexible processing infrastruc-
ture. We tackle the robustness concern through a decentralized middleware solution, and we aim
at improving the scalability of the system by using machine learning techniques to extrapolate
structured knowledge as soon as possible, so that only the relevant data needs to be transmitted
further in the network and stored on remote servers. This approach enables surveillance oper-
ators to quickly inquire the system by means of morphological or color search criteria instead of
watching hundreds of video streams, then select and automatically track interesting items within
different video streams.

1 Introduction

The concept of a smart city underlies not only a strategy of implementing innovative concepts to
public services but also integrating novel ideas to improve quality of life [1]. In this regard, an impor-
tant aspect is data analytics : gathering and extracting information from sensors provides a better
understanding of the dynamics of a city, and supports decisions for improving energy efficiency, re-
duce traffic or increase security [2]. Unfortunately public monitoring also raises several concerns [3],
as sensors and cameras gather large amounts of data all day long, uninterrupted for months and
years. Data might also be complex or time-consuming to analyze. This concern is exacerbated even
more if one considers video surveillance data: from a technical perspective, video streams easily
consume bandwidth, computational power and storage space; from a practical standpoint, accurate
analysis of hundreds of video streams cannot be efficiently performed by a human operator.
With the advancement of technology and the astounding computational power of modern computers,
automated or intelligent video analysis [4] have become very active research areas [5], solving prob-
lems ranging from people or vehicle detection and tracking [6, 7, 8], to face [9, 10] or license plate
recognition [11]. Analysis at higher levels is also possible, for example to recognize people’s activity
[12] or detect abnormal situations [13]. Video analysis is usually a multi-step process: algorithms for
detecting and tracking objects have first to deal with complex situations, such as overlapping and oc-
clusions [14], subsequently artificial intelligence and machine learning techniques can be employed
for recognizing or classifying acquired data [15]. Depending on the level of the analysis, those tasks
can be very demanding, and require GPU-Accelerated solutions to achieve real-time performance
[16, 17].
Beside algorithms, video surveillance systems also need a back-end infrastructure supporting both
the acquisition phase (streaming video from a multitude of cameras) and the storage of processed
data, should implement notification mechanisms to alert users about specific events, and must pro-
vide front-ends for accessing and searching stored information. In order to afford the required com-
putational power and storage space, there have been proposals to move video processing into the
cloud, namely through VSaaS (Video Surveillance as a Service) platforms [18, 19]. These solu-
tions relieve operators from the burden of managing complex setups and storing large amounts of
sensitive information, but are not always applicable: infrastructural or interoperability issues with the
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existing surveillance system could constitute roadblocks on the migration path between a traditional
platform and the cloud. Compared to on-premises solutions, cloud solutions might also raise legal
concerns about privacy and security [20], and are therefore not viable solution if video streams are
not allowed to be sent to a third-party.
In an effort to prove that automated video surveillance can still be efficiently deployed without neces-
sarily relying on cloud resources, this paper presents an on-going project that aims at implementing
a decentralized automated video surveillance system. By employing image analysis and machine
learning techniques, relevant data is extrapolated as structured information at or close to each ac-
quisition device; compared to a centralized video analysis system, the proposed solution avoids a
single-point of failure and allows for very little data to be sent to remote storage servers. We argue
that such a solution will provide flexibility, robustness, and scalability. Compared to traditional man-
ual video analysis, data structuring enables surveillance operators to quickly inquire the system by
means of morphological or color search criteria (instead of watching hundreds of video streams),
then select and automatically track interesting items within different video streams.

2 Related work

Automated video surveillance systems is related to several different problems: research on this topic
typically focuses on specific challenges such as object detection, multi-object tracking, pedestrian
detection or movement analysis. In this section we first provide an insight on the main problems and
the proposed solutions from an algorithmic and technical point of view; subsequently we will focus
on surveillance platforms available on the market.
One of the fundamental requirements for achieving automated video surveillance is object segmen-
tation, employed for separating objects from the background [21]. The system must be typically
capable of resolving multiple objects within the same scene, either pedestrians or vehicles. Separa-
tion can be achieved using background substraction techniques [22] or motion information [23].
Subsequently, detected objects can be analyzed to extract features such as color, size, orientation
or speed. Objects can also can classified using machine learning [24], for example to distinguish
between human and vehicles or to determine vehicle class (car, truck, motorcycle, etc.). Each step
provides additional information which can be useful for subsequent analysis and for solving the prob-
lem of object re-identification, that is the capability of recognizing the same object across multiple
cameras [25]. Higher level algorithms can be also implemented to figure out people’s behaviour [26]
or traffic flows [27].
Computer vision algorithms are just one of the pieces needed for of creating an automated video
surveillance system. A fundamental role is played by the infrastructure needed for transmitting and
storing data. In this regard a lot of research has taken place in the field of Visual Sensor Networks
(VSN) [28], which are distributed architectures, comprised of a large number of low-power cam-
era nodes, for capturing, processing and extracting relevant visual information through autonomous
collaboration. Middlewares for VSNs are typically proposed for autonomous visual surveillance or
vehicle traffic monitoring [29, 30].
Another critical issue are bandwidth requirements, which might easily hinder the scalability of a
surveillance system. In this sense, the problem brings into consideration not only the available net-
work bandwidth but also the desired video quality and the computational complexity of the encoding
and decoding algorithms[31]. In the context of video surveillance adaptive compression techniques
[32] as well as ad hoc algorithms [33] have been proposed.
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4 2 RELATED WORK

On the market, comprehensive platforms such as IBM3 or Bosch4 intelligent video analytics, focus on
providing fully integrated solutions tailored to customer’s needs to detect and analyze video streams.
More recently, some vendors, such as Agent Vi 5, introduced cloud based solutions to provide Video
Surveillance as a Service (VSaaS) [18].
Even through this brief review of related works we can see how automated video surveillance is
a relevant topic both from a research perspective and from a commercial point of view. In this
regard, our proposition is to build upon the concept of VSN, and base our solution on a decentralized
middleware architecture which exploits the increased computing power and lower cost of current
embedded devices.

Figure 1: Example frame captured from a surveillance camera (faces have been blurred on purpose)

3http://www-03.ibm.com/software/products/it/intelligent-video-analytics
4http://ipp.boschsecurity.com/en/tools/video-tools/video-analytics-overview/intelligent-video-analysis-1
5https://www.agentvi.com/
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3 Research and development context

The middleware platform presented in this paper is being developed in the context of an international
project in collaboration with two industrial partners (one headquartered in Switzerland, the other in
Lithuania). Research and development are financially supported by the Swiss Commission for Tech-
nology and Innovation CTI 6 and the European Eurostars program 7. The project aims at delivering
an hardware and software platform for processing and managing data gathered by surveillance cam-
eras. The first end-user and testing partner in this project is a municipality with a population of 70000
located in Switzerland.
The city is monitored using about 250 IP connected cameras, pointed at different streets and places
(Figure 1). Currently the surveillance platform is provided by AvigilonTM 8: video streams are available
in real-time over the network, whereas stored data can be accessed through the platform SDK. In
the event of a crime or other illegal activity, local police has access to the last 100 hours of recorded
video from each camera: since this process is long and tedious, the envisioned solution needs
to introduce computer-assisted intelligent solutions to scout for relevant information by analyzing
people and vehicles density flow patterns in public areas, index and manage objects of interest,
and notify the user if abnormal behaviors are detected. Legally wise the system is not allowed
to store data for a long time, therefore stored information must be periodically deleted: this is a
mandatory requirement that needs to be considered for the new system too. Concerning the network
infrastructure provided by the municipality, the main requirement imposed to this project is limiting
bandwidth consumption, because a significant increase of the generated traffic can easily choke the
network or prevent further expansion of the surveillance system.

4 Decentralized middleware solution

Infrastructure wise, the requirements of the project are low bandwidth consumption, robustness and
scalability: the system must limit the amount of data exchanged on the network, should be resilient
to local failures (either network or processing issues) and must be able to accommodate additional
surveillance cameras. A single central server or a cloud-based service for processing all video
streams would likely be the easiest solution, but such a system would need to be both well con-
nected (in terms of bandwidth) and sufficiently powerful (if one considers an on-premises solution).
As an example, in the current deployment scenario cameras provide either H.264 or MJPEG video
streams with a resolution up to 1920 by 1080 pixels at 30 fps: as such, the bit rate required for
realtime transmission from each camera ranges from 2 to 20 Mbps. A centralized solution would act
as bottleneck and would become a single point of failure: moreover deploying additional cameras
would likely introduce considerable costs due to the increased processing power and bandwidth re-
quirements. To limit these issues, our approach involves the use of a distributed data processing
infrastructure: we propose a decentralized middleware, where network-intensive video data trans-
mission is limited and where processing is performed as close as possible to the acquisition devices
(i.e. cameras). The advantages of such a solution are twofold: on the one side, bandwidth require-
ments are reduced because only pre-processed relevant information is sent toward storage servers;
on the other side, the system is inherently more robust and scalable, because failures (either in the
video acquisition, data transmission or processing phases) only affect specific surveillance areas.

6https://www.kti.admin.ch
7https://www.eurostars-eureka.eu/
8http://avigilon.com
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Figure 2: Overview of the middleware

4.1 Overview

The middleware is divided into three logical layers (Figure 2): the data processing layer, the infor-
mation storage layer, and the query and management layer. The first and the second layers starting
from the bottom (where surveillance cameras are connected to), operate in a decentralized man-
ner: decentralization allows each component to act as an independent entity, increasing robustness
and scalability. For management and user access purposes, the uppermost layer provides a web
interface and implements algorithms for querying the system and for setting alarms and notifications.

4.2 Data processing

Video data stream processing is achieved by means of modular pipelines whose configuration can
be tailored to the computational power, storage and connectivity of the target machine. In cur-
rent implementation, pipelines are implemented on a custom framework written in C++ running on
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GNU/Linux. For video processing the system depends on libVLC 9 and the OpenCV 10 libraries; the
pipeline framework makes use of multi-threading and seamlessly supports multi-core hardware and
graphic accelerators.
Pipelines enable a flexible configuration of the system: if necessary, raw computational power on
a node can be traded for additional bandwidth by splitting the pipeline across multiple nodes to
distribute the load or simply to perform computationally expensive tasks on a more suitable machine.
Since one of the goals of this project is reducing the cost for network infrastructure, pipelines are
constructed in such a way as to extract relevant information (and metadata) at an early stage in the
processing workflow and close to the acquisition device. Accordingly, bandwidth requirements drop
sharply compared to a centralized solution: for example, instead of continuously streaming videos
from a camera pointed on a footpath to a storage and processing server, the system just needs to
send single frames with detected pedestrians, each one tagged with its direction of movement and
speed, summing up to an average size of just few hundreds kbytes.
Because each node can be configured independently, the data processing infrastructure can be
composed of a heterogeneous set of hardware platforms: close to each camera, low-cost embedded
computers (such as Raspberry Pi11) can be used to perform object tracking using simple algorithms,
or can provide speed or direction estimations; farther away from the cameras, more powerful ma-
chine called gateway nodes (using Intel c©i7TM processors coupled with NVIDIATM GPUs) are tasked
with performing computationally expensive tasks such as classification on the data coming from em-
bedded systems. Communication between modules in the same pipeline is based on ZeroMQ 12:
metadata attributes are encoded in a JSON document and sent along with the frame containing the
object and a background mask. To simplify the creation and the deployment of pipelines several
support tools have been developed: an operator can compose a processing pipeline and assign
nodes to different machines using a visual editor (Figure 3).

4.2.1 Object tracking

The first step in each video processing pipeline is detection and tracking of moving objects, which
need to be isolated from the background. In the current implementation we only consider static
surveillance cameras, for which different trackers have been implemented: a simple tracker based
on background subtraction, one based on motion templates [34], one employing a meanshift algo-
rithm [35], and another one based on kernelized correlation filters (KCF)[36]. The choice between
these algorithms depends on the usage scenario (people or vehicle tracking, camera position, etc.).
Tracking modules process camera frames and send results (with metadata such as direction and
speed) to a classification module.

4.2.2 Object classification

Classification is initially performed to distinguish between humans (single person or group) and
vehicles (cars, motorcycles, vans and trucks); depending on the classification result the object is
forwarded to a different path, in order to extract features specific to each class (for example, the
sex of a person). The classification module employs machine learning and depends on the Caffe 13

9https://www.videolan.org/
10http://opencv.org/
11https://www.raspberrypi.org/
12http://zeromq.org/
13http://caffe.berkeleyvision.org/
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Figure 3: Visual editor window with a typical processing pipeline

deep learning framework. Being a computationally expensive task, classification is not suited for low
power of embedded systems, but is only executed on gateway nodes with a GPU accelerator.
Multiple classification modules can be added to a pipeline to refine the information stored along with
each object. As an example, vehicle classification can be followed by make and model classification,
whereas human classification can entail sex or age classifications. Each classifier requires precisely
trained models, and produces an output vector which contains the probabilities of the object of
belonging to a specific class.

4.2.3 Color matching

Classified items are further processed to determine the dominant color. Colors are a distinct charac-
teristic of an object and provide a useful search criteria to filter out irrelevant information. In the case
of detected vehicles, the color matching process considers the whole image, whereas for humans
the matching operation produces separate results for the upper and lower halves of the picture.
Precise color matching depends on several factors, first and foremost the lighting conditions of the
captured scene. Moreover, determining the dominant color of an image is heavily influenced by
the capabilities of a camera to faithfully encode the acquired image, the dynamic range of the cam-
era sensor, sensor noise, white balance, compression artifacts, etc. The same scene captured by
different cameras can easily present large differences in color reproduction.
To tackle this problem we employ a color matching algorithm based on template palettes: for each
considered color class a template image with different shades of the same color is produced. Tem-
plates can vary between each camera and help minimize matching errors caused by color variations
due lighting conditions. Captured images and templates are processed to produce histograms rep-
resenting the distribution of pixel colors in the image: by comparing these histograms it is possible to
produce a distance value for each color class. Distance values are grouped into a vector, where the
largest components determine the dominant colors in the image. This vector is added to metadata
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information before sending the item forward in the pipeline.

4.3 Information storage

At the end of a processing pipeline, data items are sent to a database for indexing and further
analysis. In order to create a flexible data structure which can easily accommodate future changes,
storage is based on a the non-relational database MongoDB14. For each item, the database stores
a JSON style document with all the metadata, as well as the captured image and the background
mask. Because there is no direct connection between the upper and the data processing layers,
the database also manages configuration data for each camera (name, location, frame rate, etc.)
and for each processing node. Depending on the size of the network, one or multiple instances of
MongoDB can be deployed in the system in order to achieve horizontal scaling through sharding. To
cope with network or database failures, each node can keep data on its local disk while waiting for
the connection with the storage server to be restored.

4.4 Core system and querying interface

From an operational point of view, the system needs to assist law enforcement agencies in the task
of video surveillance, by making the system easy to configure and maintain, and by making relevant
information easily accessible. Beside decentralized processing and storage components, the pro-
posed middleware thus comprises a core system which is tasked with monitoring the infrastructure
for faults and failures, deploying camera and remote node configurations and maintaining databases.
The core system is also responsible for exposing a web interface which allows end-users to browse
stored data, perform search queries and setup alarms (Figure 4). Multiple filter clauses can be
combined within the same search query using boolean operators: each clause will filter results ac-
cording to peculiar characteristics of the searched item, such as geo-localization data (based on
camera position), date and time, color, or classification results.
The core system is implemented in C# (ASP.NET)/C++ and can operate independently from the
processing platform. Communication between data processing nodes and the core system is strictly
asynchronous and is mediated by the storage layer: node configurations and status reports are kept
on a MongoDB database, and it is up to each camera node to periodically check for updates. Since
MongoDB has no native automated task management, in order to fulfill legal requirements, the core
system is also responsible for deleting all the data collected more than 100 hours before.

4.4.1 Object re-identification

An important aspect of surveillance is the ability to track subjects (people or vehicles) across different
cameras (also called people re-identification) in order to infer direction of movement and therefore
their (probable) future location. Object re-identification is triggered by a human operator through the
querying interface, and is performed within the core system. The task involves comparing a selected
item with (possibly) all other images in the database (which would introduce a complexity of at least
O(N2)).
Concerning vehicles, re-identification can be generally achieved through license plate recognition.
Unfortunately this is not always possible, for example if cameras provide a low resolution video
stream. Furthermore, such a technique will fail if the license plate is hidden behind other objects. To
reliably track any object, including pedestrians or people on a bicycle, across multiple cameras other
techniques are therefore needed. In our project we tackle this problem by implementing a multimodal

14https://www.mongodb.com
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Figure 4: Querying interface
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fusion algorithm to combine different measurements and obtain a weighted similarity score. To
reduce the complexity of this task, a pruning step is also employed: data filtering algorithms based
on geo-localization, object classes and other specific heuristics (for example, projected distance
traveled based on speed and direction) are used to create a reduced comparison set upon which a
similarity analysis can be performed in a reasonable amount of time.
Once the comparison set is defined, a feature comparison algorithm can be used. In this project
we employ the SURF algorithm [37] to extract and compare basic features from each image. This
algorithm works on a grayscale copy of the image and detects matching features between two im-
ages. Using a distance calculation a numerical value representing how different the images are, is
computed: the lower this value, the more similar the two images are (a value of zero is expected
when comparing an image with itself).
Unfortunately the similarity between two object computed by the SURF algorithm heavily depends
on the camera angle: for example, two images of the same person, one taken from the front, one
from the back, will likely result in a large SURF distance and deceive the algorithm. Therefore this
value alone is not enough for the purpose of re-identification. To improve on this, we make use of
other comparable values obtained from the processing phase, namely the resulting vectors of the
classification and color matching steps. Vectors are compared using the euclidean distance, and
the weighted sum of all distances is used to determine the similarity between two images (hence
the term multimodal). Since the re-identification algorithm is probabilistic, results might still contain
errors. More specifically, given a target image object by the user, the system can either report
completely unrelated objects as similar (false positive) or ignore a different picture of the target
object (missed detection). This problem cannot be fully eradicated, but in order to deploy a robust
re-identification algorithm both false positives and missed detections need to be minimal.
In order to validate our approach we employed the 3DPes dataset [38]. As shown in Figure 5,
the SURF algorithm alone is not enough to obtain satisfactory results when it comes to object re-
identification. Accordingly, the DET curve shows that it is very difficult to obtain a low missed de-
tection rate along with a false positive rate. However, by combining the similarity score of the SURF
algorithm with those of the color matching module and the classificator, we were able to signifi-
cantly improve the re-identification rate with just 25% in both the missed detection rate and the false
positive rate. These results, combined with an early filtering of the data, enable for an reasonable
retrieval of different images of the same individual even when captured from different cameras and
angles.

5 Conclusions and future work

In this paper we presented an on-going project aimed at building an intelligent surveillance solution
for smart cities. The proposed approach is based on a middleware which delegates the video pro-
cessing tasks to decentralized nodes installed in proximity of each camera in order to limit bandwidth
requirements. Video analysis is achieved through a modular data processing pipeline which can be
splitted across multiple nodes, depending on the computational power of each machine. The pro-
cessing phase produces structured information which is subsequently stored on document-based
databases and can be queried by means of morphological or color search criteria. The system
makes use of several neural-network classifiers to organize data into categories for faster retrieval.
Furthermore, an object re-identification mechanism based on a multimodal fusion algorithm has
been implemented to assist human operators in matching subjects (people or vehicles) across dif-
ferent cameras views: results show that satisfactory results can only be obtained by reducing the
size of the comparison set and by merging results from different comparison measures.
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Figure 5: Detection error tradeoff (DET) curve for the object re-identification step
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This project has not yet reached its conclusion: even though several interesting results have already
been obtained, there are still some issues that need be investigated. The scalability and robustness
of the solution needs to be thoroughly verified with field tests. In order to improve object classifica-
tion, a feedback mechanism and an automatic retraining of each neural network model would need
to be implemented. The idea is to initially provide neural-networks with a generic model which will
be updated when the system is deployed or when a new camera is added. Another future work
is the integration of mobile cameras, such as vehicle mounted ones: this step introduces further
challenges in the data processing part of the middleware, specifically for the object detection and
tracking phases. Finally, the system currently lacks an automatic behavior recognition mechanism,
which needs to be implemented to trigger notifications when abnormal situations are detected.
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