
Solenopsis: A Framework for the Development of
Ant Algorithms

Amos Brocco
University of Fribourg
Fribourg, Switzerland

Email: amos.brocco@unifr.ch

Béat Hirsbrunner
University of Fribourg
Fribourg, Switzerland

Email: beat.hirsbrunner@unifr.ch

Michèle Courant
University of Fribourg
Fribourg, Switzerland

Email: michele.courant@unifr.ch

Abstract— Network resources management issues in complex
and dynamic scenarios require decentralized solutions and adap-
tive systems to face critical and unattended situations. Bio-
inspired techniques such as swarm intelligence algorithms, have
proved to be robust and suitable for managing tasks like routing,
load-balancing or resource discovery. In this paper we describe
Solenopsis, a framework for the development, simulation and
deployment of ant-algorithms, which is aimed at supporting
network management middlewares. The system provides a mod-
ular and scalable environment that can be distributed over a
network. Ants are coded using a simple programming language,
and are able to migrate across nodes. Two basic load-balancing
algorithms are presented and evaluated, as an example of how
this tool works and can be used in practice.

I. INTRODUCTION

Resource management in highly dynamic networks, mobile
networks, P2P systems or pervasive computing environments,
faces a number of challenges related to scalability and relia-
bility of algorithms. Centralized or hierarchical management
scales badly and is prone to creating bottlenecks. Managing
dynamic heterogeneus environments requires flexible, robust
and adaptive systems. Research has shown that these require-
ments may be fullfilled by self-organized multi-agent systems
with emergent behaviors [1]–[3]. One of such mechanisms is
ant colony optimization (ACO).

ACO [4] is a metaheuristic problem solving technique
inspired by ant social behaviors. One of the most exploited
concerns the problem of searching for food and then inform
other individuals in the colony about the path followed to
reach it. Basically, when ants leave their nest to look for food
they wander almost randomly. As a food source is found, the
ants travels back to nest, and leave a pheromone trail that can
be subsequently used by other ants to reach the food. The
shortest the route to food, the more frequently the trail will
be reinforced, thus allowing optimal solutions to shortest-path
problems or to the travelling salesman problem (TSP) to be
found. Other kinds of optimization problems that can be solved
by mean of ant-algorithms can be found in [5].

Another interesting behavior is the one shown by ants of
the Messor Sancta species, where members of the colony are
able to clean-up their nests by piling up dead bodies. Messor
[6] implements this algorithm to perform load-balancing in a
P2P network.

Despite the little solving capability of individual ants,
colonies exhibit some kind of emergent behavior that is able
to work out almost optimal solutions to difficult optimization
problems such as finding the shortest path between two
locations, balancing traffic on a track, or organizing defense
against attacks from stranger colonies.

In computer science, ants are simulated by mean of au-
tonomous agents that move across a graph (being, for example,
a communication network). In [7] a distinction between intel-
ligent and unintelligent artificial ants is made. Intelligent (or
agent-based) species have limited individual capabilities and
can interact with the environment and with other ants; commu-
nication is typically done by leaving an artificial pheromone
trail (stigmergy). On the other hand, unintelligent ants are used
solely as information conveyors, and are employed in complex
adaptive systems (CAS), where some degree of fault-tolerance
and adaptability to environmental changes is required. Like all
other swarm intelligent systems, ACO systems are completely
decentralized and self-organized: complex tasks are carried out
by mean of simple local interactions between ants and the
environment.

Beside the field of optimization problems, ant-based and
biologically inspired systems have also found their way in
complex systems management, in situations where centralized
approaches are difficult or impossible to implement, or just
too unreliable. In such cases, emergent behavior coupled with
self-organizing capabilities provide the increased robustness
and scalability typical of distributed systems along with the
ability to react and adapt to situations.

In this paper we will introduce Solenopsis 1, a framework
aimed at simplifying the development and simulation of ant al-
gorithms for network management purposes. This application
is part of an ongoing project called SmartGRID [8], which
aims at providing a self-organizing intelligent network man-
agement middleware; nonetheless Solenopsis is developed as a
standalone application that can be used in different scenarios.
Section 2 presents related work in the domain of agent-based
and bio-inspired network resource management middlewares.
Section 3 provides the specifications of the framework, and an
overview of its model with a focus on the main components.

1Solenopsis Invicta, also known as Red imported fire ant, is a particularly
aggressive species of ant originary from South America.



Finally, section 4 describes the implementation and evaluation
of two simple load balancing algorithm on our platform, as an
illustration of its usage.

II. RELATED WORK

Our research on resource management in using swarm
intelligence algorithms is currently focused on three domains
of application: routing, network load-balancing, and resource
discovery. The routing problem, which can be viewed as
an instance of the TSP, has been widely investigated, thus
different solutions relying on ACO exists; examples can be
found in [9] and [10]. The load-balancing problem concerns
optimal resource allocation in computing networks, and is
mainly solved by using variations of the Messor algorithm [6],
[11]. For resource discovery using ant algorithms, an approach
applied to P2P networks is presented in [12].

Because many algorithms rely on empirically found param-
eters, simulations and the capability of fine-tuning specific
values play an important role in the research and evaluation of
ant-based systems. To support development of ant algorithms
some specific software platforms exist: examples are Swarm
[13], MASS [14] and Anthill [7].

The Swarm Simulation System allows to model multi-
agent discrete simulations at different levels. The framework
is object-oriented, with agents being objects. Agents can
interact with each others, and the whole simulation can be
synchronized. The platform itself offers different tools for
algorithm profiling and data analysis.

The Multi-agent System Simulation Framework (MASS)
allows accurate and controllable simulations. To ensure that re-
sults are reproducible, two simulation techniques are available:
discrete time simulation and event-based simulation. Agents
can sense the environment and perform a mixture of real and
simulated activities.

Anthill is a Java framework that supports P2P application
development. It provides runtime and simulation environments
and it has been successfully used to implement the Messor
load-balancing algorithm. The runtime environment is a mid-
dleware built on JXTA [15] that allows real-world deployment
of applications, whereas the simulation environment allows
local testing and evaluation of ant algorithms. Unfortunately
the development of Anthill was stopped in year 2002.

The first two platforms aim at evaluating multi-agent coor-
dination in distributed systems with total accuracy, by mean
of a simulation environment; therefore their architecture is not
well suited for real-world distributed dynamic environments.
In contrast, the Anthill one is not only aimed at supporting the
design and analysis of P2P systems, but at the implementation
of such systems in real network environments as well.

To such an extent the Anthill framework is the most
related to the work described in this paper, notwithstanding
that some of the goals and the requirements are different,
namely because our research is not focused on P2P networks
optimization but on the study of ant-algorithms for general
network management tasks.

Finally, some network middleware systems that exploit bio-
inspired algorithms already exist: examples can be found in
EcoMobile [16] and ARMS [17].

The EcoMobile framework has been developed in our
research group, in order to provide active management for op-
tical networks. EcoMobile approaches the problem of network
resource management by using an ecosystem of mobile agents
and task-objects (software entities executing a computational
task). Agents perform navigational and coordination activities,
whereas task-objects themselves exhibit the operational be-
havior. The way agents and task-objects collaborate for the
management of the system is bio-inspired: while the former
wander around, the latter may attach to them to be carried
away.

The ARMS platform is an agent-based management mid-
dleware that implements the Messor algorithm to balance load
between nodes [18]. Self-organization is achieved by mean of
unintelligent ants that dispatch information between agents;
thus ants just act as information conveyors.

III. SOLENOPSIS FRAMEWORK

In this section the Solenopsis framework is discussed. First,
the requirements and design goals are presented. Then an
overview of the framework is provided, followed by an in
depth discussion of its components.

A. Design goals

Solenopis has been developed with the goal of being easy to
deploy and extend. The main idea that drives this project is to
provide a customizable software to simplify the development
and the analysis of ant-algorithms. The required features can
be divided in two groups: low-level and high-level require-
ments.

Low-level requirements focus on the internal details of
the framework: a clean and simple object-oriented design,
a distributed and multi-platform architecture, scalability and
modularity.

On the other hand, high-level needs concentrate on the bare
features that should be made available to the programmer
when developing ant-algorithms: capability of transparently
migrating ants from one node of the distributed network to
another, communication facilities between ants and access to
external resources.

B. Solenopsis model

Figure 1 gives an overview of the framework. Solenopsis
software is distributed over a network of nodes. On each node
a daemon manages one or more virtual machines, each one
executing an ant-algorithm. As the virtual machine is kept
simple by design, it offers only basic types management,
delegating all high-level requirements to dynamic service li-
braries installed on the node. Such services include migration,
communication, environment perception and logging facilities.
Ants can access these services by mean of function calls.
Virtual machines are created and destroyed dynamically: as
soon as an ant tries to migrate to a node, a new virtual



machine is allocated and bound with the available services.
For simulation and analysis purposes many daemons can be
run on the same node, in order to ease collection of results.
Unlike other frameworks, Solenopsis does not impose a spe-
cific communication layer, and can rely on custom developed
network services.

The current implementations of the compiler and the virtual
machine are made in Java.

Fig. 1. Solenopsis Model and migration steps: (1) Incoming migration de-
mand (2) Request for a new virtual-machine (3) Runtime status reestablished,
execution resumed (4) Call to Migration service (5) Serialization of ant state
and outgoing migration

C. Ants

Ants can be developed in a Lisp-like language then com-
piled to byte-code. The latter is then encoded to a platform
independent Unicode string, which can be interpreted by the
virtual-machine. The ant programming language uses the same
syntax as Lisp, but also adds some constructs typical of
imperative languages, such as set! (to change the value of
a variable), begin (to define procedural blocks) and while/for
loops. Examples of code can be found below.

Ants are typically generated by services running on a node,
either in response to changes in environmental conditions or
to user’s requests. By mean of services available on a node,
ants may have the ability to move to other nodes, to collect
information about the network, to communicate with other ants
(either directly or through stigmergy), or to perform specific
actions such as updating routing tables.

The algorithm describing the behavior of the ant as well as
its runtime status are encapsulated in the ant itself. This allows
loading, executing and migrating different ant species in the
system. Additionally, as the evaluation and the deployment
environment are the same, there is no need to re-implement
algorithms.

As the byte-code is interpreted by a VM, ants are sandboxed
and the whole execution environment is protected; overall
security is increased because only services made available by
the node can be accessed.

D. Virtual Machine

The VM bytecode is stack-based and fully interpreted by the
virtual-machine. There is support for some basic types such
as number (integer and float), string, list, dictionary, lambda,
and nil (the only type whose semantic value is the boolean
False); functions to manipulate these types are available as
built-in. Additionally a blob type is present, and typically
allows exchanging data between services without using basic
types. Currently 19 stack operators are available:

• LOAD: Loads a variable on the stack.
• STORE: Stores the value on the top of the stack in a

variable.
• SET: Assigns the value on the top of the stack to a

variable.
• CONST: Loads a constant value (number or string) on

the stack.
• JUMP: Jumps to a relative offset in the byte-code.
• FJUMP: Jumps if the top of the stack is nil.
• TJUMP: Jumps if the top of the stack is not nil.
• IFCALL: Calls an internal function.
• EFCALL: Calls an external function (service).
• IPCALL: Calls an internal procedure.
• EPCALL: Calls an external procedure (service).
• BIND: Binds the n-topmost values of the stack with the

given variables.
• RETURN: Returns from an internal function or procedure

call.
• DROP. Drops a stack frame (used when returning from

an internal call).
• END: Terminates the execution.
• LAMBDA: Defines a new lambda object.
• LFCALL: Calls a lambda function.
• LPCALL: Calls a lambda procedure.
• SYNC: Synchronizes with other ants.
The VM executes only single-threaded code, and is neither

aimed at supporting object-oriented programming nor purely
functional programming (despite the programming language
being inspired by Lisp). The type-system is dynamic: variable
type is completely determined at execution. As there is no
concept of pointers or references to data, variables are always
passed by-value. Finally, there is full support for recursive
calls and local variables.

A drawback of keeping the VM small is that built-in
functions are too simplistic and barely sufficient for real
ant-algorithms development. To overcome this limitation, the



execution of additional functions is delegated to external
services bound to the VM: in the current implementation
each service consists of one or more Java classes that are
dynamically loaded by the daemon. Each class provides a
function that can be invoked from the ant’s code by mean of
an identifier: the daemon is responsible for mapping function
identifiers with the corresponding object. An advantage of
such a design is the possibility to extend and customize the
framework without modifying the core components. Currently,
plugging-in or removing services is simply a matter of copying
or deleting the service classes from a directory.

Services can implement side-effects such as moving the ant
to another node or changing some values in a local database:
to provide such functionality, each service has full access
to the virtual machine and its execution state. Additionally
the virtual machine allows deserializing and serializing of its
whole state from and to an Unicode string representation,
which is essential for allowing strong migration of ants.
The aim of serializing to a string instead of binary data is
improving portability by allowing re-implementation of the
virtual machine in other languages.

E. Services

Services available on a node are essentials for the de-
velopment of ant-algorithms, and deserve a more detailed
description. Services can be called in the ant code as if they
where internal functions, but at byte-code level they need
to be referenced explicitly. In the following subsections the
main services will be discussed, with a focus on the two most
important ones: migration and perception.

1) Migration: The migration service allows moving a
running ant from one node to another, thus performing a
strong migration. This service exports two functions: migra-
tion::migrate and migration::fork. The first one sends an ant
to a given target node, the latter forks the ant so that a new ant
is executed on a remote node whereas the caller ant continues
its execution on the local node. An example of these services
is given in Figure 2.

(if (migration::migrate target)
<code executed on the target node>

else
<code executed if migration failed>)

(if (migration::fork target)
<code executed on the target node>

else
<code executed on the local node>)

Fig. 2. Migration and forking

The migration service is also responsible for managing
incoming migration requests, instantiate a new VM object
and use it to restore ant execution. The migration process
(incoming and outgoing) is depicted in Figure 1 (1)-(5):

(1) An incoming requests is received by a server run by the
local migration service. This server is executed upon

initialization of the service, and listens on a socket for
incoming migration requests.

(2) The migration service asks the local daemon for a new
VM object.

(3) The VM state is restored and the virtual-machine is set
running.

(4) As the ant calls the migrate or fork function, the VM
state is serialized by the migration service.

(5) Ant execution state is transmitted to the target node.

The migration and forking functions return a value rep-
resenting the node where the execution is resumed: the ant
knows if the migration succeeded by checking that value.

2) Perception: The perception service allows an ant to in-
teract with the environment, by reading and writing (key,value)
tuples. Typically it is possible to get information about the cur-
rent node, such as its network address or its neighbors. Tuples
are identified by their key, represented by a string, but asso-
ciated values can be any VM recognized type. Four functions
are available for this service: perception::getEnvProperty (to
read an environment property), perception::hasEnvProperty
(to check if a given property is defined in the environment),
perception::setEnvProperty (to define or modify an envi-
ronment property) and perception::removeEnvProperty (to
remove a property). All information must be persistent and
accessible from outside the node, and is typically stored in a
database local to each node. Figure 3 shows how to read the
current node identifier.

(perception::getEnvProperty "node.id")

(perception::setEnvProperty "ping" 143)

Fig. 3. Reading and writing an environment property

3) Communication: Ants communicate in an indirect way,
by mean of a blackboard. Ants can store and retrieve values
stored in the local node by mean of a key, which is matched
using regular expressions. Information published on the black-
board is non persistent, thus it is lost in the event of a node
crash.

4) Logging: The logging service allows ants to log events
that can be retrieved by the user. Beside its debugging purpose,
logging can also be used to track ants location in the network.

5) Other services: Additional services consisting of syn-
chronization, mathematical or random functions are also avail-
able. Synchronization routines allow discrete-time simulations
and a deterministic behavior from one simulation to the
next. Synchronization methods are available both for local
simulations and in a distributed environment (using a central
server). By mean of random functions it is also possible
to introduce non-deterministic behaviors which are typically
required when implementing random wandering of ants in
the network. Finally, mathematical functions can be used for
statistical analysis, or for other kind of intensive calculations
that would be too slow or just impractical to implement
directly in ant code.



IV. CASE STUDY

As an example of usage of this framework, this section
presents the implementation and the simulation of load-
balancing algorithms inspired by Messor [6]. In the first part,
some background information about the Messor ant algorithm
is given. In the second and third parts, details of the implemen-
tation of two algorithms are discussed. In the fourth and fifth
parts, some information about the simulation environment is
given. Finally simulations results and a performance evaluation
is provided.

A. Messor ant algorithm

The Messor load-balancing algorithm, in all its variations,
is inspired by the behavior of ants of the Messor Sancta
species. It has been observed that ants group objects in their
surroundings in order to clean-up their nest. This behavior
was simulated successfully with artificial ants, and has been
resumed to the following three rules [19]:

(i) Wander around randomly, until finding an object.
(ii) If an object is being carried, drop it and continue

wandering.
(iii) If nothing is being carried, pick up the object and

continue wandering.
To solve the load-balancing problem, these rules are actually

reversed. Objects are the jobs assigned to a node, and the goal
is to move jobs around between nodes to equalize the load.
Instead of piling objects together, the objective of the ant is
to scatter them around:

(i) Wander around randomly, until finding an overloaded
node.

(ii) When an overloaded node is encountered, pick it up its
jobs and continue wandering.

(iii) When no more overloaded nodes are encountered, drop
the carried jobs.

B. First algorithm

The first algorithm is a straightforward implementation of
the Messor rules described above; the actual code is summa-
rized in Figure 4 (for space reasons some functions have been
omitted).

Ant life is divided in two phases: an exploration phase and
a balancing phase. In the first one, the ant wanders randomly
in the network, collecting information about nodes load. In the
second phase the ant performs a load balancing between the
most and least loaded nodes found.

When an ant is created, global variables are instanced and
the __body__ procedure is invoked. The body of an ant is
typically coded as an infinite loop that repeats the algorithm
until a termination function is called. This algorithms requires
six global variables to be defined: MAXSTEPS is an integer
defining the maximum number of wandering steps allowed
before switching the state. To store the current state, the
currentState integer is used: 0 for SearchMin, 1 for
SearchMax. Variables maxLoadId and minLoadId are used
to store the identifiers of the nodes with maximum, respec-
tively minimun, load found; maxLoad and minLoad record

their values. These last four variables are initialized to the
values found on the node where the ant is created.

(define MAXSTEPS n)
(define currentState 0)
(define maxLoadId (perception::getEnvProperty

"node.id"))
(define minLoadId maxLoadId)
(define maxLoad (perception::getEnvProperty

"node.load"))
(define minLoad maxLoad)

(define (__body__)
(let ((steps 0)

(target nil))
(while 1 (begin
(set! steps (+ steps 1))
(updateLoad)
(if (>= steps MAXSTEPS) (switchState))
(set! target (getRandomElement

(perception::getEnvProperty
"node.neighbors")))

(migration::migrate target)))))

Fig. 4. Body of the first algorithm

Beside global variables, some local variables are also de-
fined in the body: steps (to count the actual wandering steps)
and target (used to store the destination of a migration). As
the algorithm begins, the ant is in the SearchMin state. At each
loop the number of steps is incremented: when the MAXSTEPS
value is reached the state is switched.

Depending on the current state, the updateLoad function
is used to update the maximum or minimum load found, along
with the associated node identifier. In other words, the goal of
the SearchMin state is to find the least loaded node, whereas
the SearchMax state looks for the most loaded node.

The algorithm determines the node where to migrate by
randomly selecting a node from the neighbors list. A migration
then takes place, and the following loop is actually executed
on the target node.

Upon switching from the SearchMin to the SearchMax state,
the ant resets the step count and continues wandering for
MAXSTEPS steps. When switching back to the SearchMin
state, a balancing is made between the node with the maximum
load found, and the one with the minimum load. The ant then
dies.

Two major constraints are set on this first algorithm. The
first is the mandatory number of steps to perform in each
state: this value must be defined beforehand, and determines
the length of the exploration phase of the ant. The second is
the limited life of the ant: as soon as the balancing is done,
the ant is killed by the system.

C. Second algorithm

The second algorithm introduces two modifications to the
first one: forking and anticipated balancing.

The idea behind forking is to generate additional ants
in extreme load situations. Each ant keeps a mean of the
loads encountered in its wandering: when this value exceeds



a certain threshold, the ant performs a fork instead of a
migration. A fork results in two ants being alive: one on
the current node and an exact copy on the target node. To
avoid generation of too much ants by consecutive forks, after
each fork the load mean on both ants is simply halved2. To
implement this behavior, the migration call in the body is
replaced by a call to the move function (shown in Figure 5).
The loadMean variable is used to choose between migration
or forking.

(define (move target)
(if (> loadMean LOADMEANTHRESHOLD) (begin

(set! loadMean (/ loadMean 2))
(migration::fork target)

) else (begin
(migration::migrate target)
)))

Fig. 5. Fork

The second improvement, shown in Figure 6, is anticipated
balancing. Small changes in the __body__ function allows
an ant to perform balancing of two nodes aforetime if some
conditions are met. Balancing two nodes beforehand is per-
mitted when the mean loads of the nodes traversed and the
load on the current node are below a given threshold.

...
(updateLoad)
(if (and (= currentState 0)
(< loadMean 30)
(< (perception::getEnvProperty "node.load") 30))
(begin
(balancing::balance maxLoadId
(perception::getEnvProperty "node.id"))

(migration::kill)))
(if (>= steps MAXSTEPS) (switchState))
...

Fig. 6. Anticipated balancing

The load on the current node is balanced with the most
loaded node found in the past cycles; balancing is followed by
a call to migration::kill, which results in the death of
the ant. This algorithm shifts some control over the population
from the system to the ant: the colony itself can expand or
shrink without supervision.

D. Hardware and software platform

Algorithms have been tested on a dual AMD Opteron Pro-
cessor 252 server, equipped with 4GB memory. Simulations
of multiple nodes have been done locally to make use of the
synchronization service without incurring too much network
overhead. For storage and logging purposes, an additional
MySQL database server with similar hardware characteristics
has been used. The operating system of choice has been
GNU/Linux Debian Sarge 3.1r1, with kernel 2.6.8, compiled

2Another way to avoid explosion in ant population is to act upon the forking
threshold.

for AMD64 with symmetric multiprocessing support. The Java
runtime environment is Java2 SE 1.5 from Sun Microsystems.

E. Memory footprint

The approximate static memory footprint is 1 MByte for
the bare simulation environment, 10 KBytes for each virtual
node/daemon, 75 KBytes for each new virtual machine created
on a virtual node, and 75 KBytes for basic services (which can
be shared across local daemons during simulations). Dynamic
memory usage depends on the number of ants and their code
size (an ant being typically 3 KBytes for the considered
algorithms).

F. Simulation methodology

To evaluate both algorithms, a two-dimensional torus net-
work topology has been chosen.

In a first run, the network is composed of 400 nodes, with
random loads uniformly distributed between 0 and 100 jobs.
For a second run a network of 100 nodes is used; in this case,
a single node is initially loaded with 2500 jobs.

In both experiments, a node is considered as overloaded
when it carries more than 70 jobs; the node load is checked
every 25 iterations, and on each overloaded node a new ant is
generated. The simulation has been conducted in discrete time
using a global synchronization between all nodes: each itera-
tion corresponds to a cycle of the algorithm body followed by
a migration. Additional parameters used for these simulations
are:

• MAXSTEPS set to 10.
• Forking if load mean is greater than or equal to 80 jobs

per node.
• Anticipatory balancing if the load mean and the actual

load are both lesser than 30 jobs.
As the upper limit of the number of steps performed by

the ant in both algorithms is 20, regenerating a new popula-
tion every 25 iterations (thus leaving a death phase between
generations) was done for visualization reasons.

The goal of both algorithms in both runs is to remove the
overload by attaining a load of 70 jobs on each node.

G. Performance evaluation

Figures 7 to 10 show the results for the two runs; depicted
are the evolution of the global overload (grey area), the number
of overloaded nodes (black line), the number of balancings
(dotted histogram), and that of migrations (thin grey line) with
respect to iterations (x-axis). The size of the population is not
depicted because it corresponds to the number of migrations,
as at each iteration one ant performs exactly one migration.

In the first run, the first algorithm (Figure 7) spends the
first 20 iterations exploring the network, finally balancing the
loads. A new generation of ants is generated by the system
only at the 25th iteration, and the global overload is canceled
after 98 iterations. Also, the number of migrations equals the
number of nodes currently overloaded.

The second algorithm (Figure 8) quickly decreases the over-
all overload by exploiting its anticipated balancing capability.



The fact that network load is randomized at the beginning,
provides good situations for anticipated balancing. Forking
increases the ant colony size in regions of higher load; newer
ants are able to better balance these regions without waiting
for a new colony to be generated by the system. It is interesting
to note that the number of migrations no longer corresponds
to the number of overloaded nodes.

Comparing the two algorithms, the second one clearly
performs better, and roughly takes 30 less iterations than the
first one to completely eliminate the overload.

Fig. 7. First algorithm, first run (random loads)

Fig. 8. Second algorithm (fork, anticipated balancing),
first run (random loads)

In the second run, the first algorithm (Figure 9) struggles to
get a sufficient population of ants being able to minimize the
global overload. Given that free nodes are available near the
loaded one, ants are forced into exploring the network until
the 20th iteration. The system must then wait 5 iterations until
a new generation is created.

The second algorithm (Figure 10) is able to generate many
ants in the first iterations, with forking taking place in the
neighborhood of the only loaded node.

For both algorithms, as soon as ants reach new parts of the
network, free nodes are found and the load is then quickly
balanced. Nevertheless, the second algorithm still has an edge
over the first one, and manages to eliminate the overload with
half iterations.

As we were expecting, Solenopsis behaves such that in both
runs the second algorithm is able to balance the network with
fewer iterations.

Fig. 9. First algorithm, second run (single node initially loaded)

Fig. 10. Second algorithm (fork, anticipated balancing),
second run (single node initially loaded)

Despite showing an improvement in the performance of both
runs, forking also has a major drawback that could limit its
implementation outside simulations: in high load situations,
the size of the population grows almost exponentially. As
the number of migrations is proportional to the number of
ants, network congestion problems could arise. Increasing the
threshold required for forking or upperbounding the number
of forks that an ant can perform during its life cycle could
probably limit this effect. On the other hand, in the first
algorithm the number of ants is proportional to the number



of overloaded nodes; that way, the colony size is completely
foreseeable knowing the status of the system.

V. CONCLUSION

In this paper we presented the Solenopsis framework for the
development of ant algorithms aimed at supporting network
management middlewares. This software meets the objectives
of a modular and scalable framework, and fullfills the require-
ments for both simulation and deployment scenarios.

The model is simple by design and allows further extensions
or external components to be easily integrated. Ant develop-
ment is done with a Lisp-like language, which allows rapid
prototyping of algorithms.

Simulation of algorithms can be performed on a local syn-
chronized environment, whereas deployment using distributed
nodes allows unsynchronized testing the system with real-
world conditions.

As an example, two simple load-balancing algorithms im-
plementations were detailed, and simulations results validate
the use of this framework for its purposes. A next step will
aim at developing and test more robust network management
techniques, such as routing or resource discovery algorithms.
Evaluation of such algorithms will then be provided in the
context of large scale deployments in real world scenarios.

Next improvements will also include the creation of a de-
velopment environment for ant algorithms to allow a yet more
simplified simulation and evaluation, as well as additional
service libraries.

To a certain extent, this work joins research done on the
Anthill framework [7], although the goal of the Solenopsis
framework is to support generic network management and
not the development of P2P systems. In the context of the
SmartGRID project [8], Solenopsis forms a low-level signaling
layer meant to collect and dispatch information about the
network status. On top of that, to build the SmartGRID
network management middleware, an agent-based layer will
use this information to coordinate and manage high-level tasks,
such as scheduling or resource discovery in a computing Grid.

The complete source code of Solenopsis, which includes
the bytecode compiler, the virtual machine, documentation and
some example services, can be freely downloaded from [21].

ACKNOWLEDGMENT

Solenopsis has been developed thanks to the financial sup-
port of the Swiss Hasler Foundation [20] in the framework of
the “ManCom Initiative” (ManCom for “Managing Complex-
ity of Information and Communication Systems”), project Nr.
2122.

REFERENCES

[1] G. Di M. Serugendo, M.-P. G. Irit, and A. Karageorgos, Self-Organisation
and Emergence in MAS: An Overview. Informatica, Volume 30, Number
1, 2006

[2] Alberto Montresor, Hein Meling, Özalp Babaoglu, Toward Self-
Organizing, Self-Repairing and Resilient Distributed Systems. Lecture
notes in computer science, Springer, Berlin, Germany, 2003

[3] D. N. Legge, and P. R. Baxendale, An Agent-Managed Ant-Based Network
Control System. Third Symposium on Adaptive Agents and Multiagent
Systems (AAMAS-III) , AISB’03 Convention, University of Wales,
Aberystwyth, 10rd - 11th April 2003.

[4] Marco Dorigo, Thomas Stützle, Ant colony optimization. The MIT Press,
2004.

[5] M. Dorigo, G. Di Caro, and L.M. Gambardella, Ant algorithms for
discrete optimization. Artificial Life 5 137-172, 1999

[6] Alberto Montresor, Hein Meling, and Özalp Babaoglu, Messor: Load-
Balancing through a Swarm of Autonomous Agents. AP2PC 2002: 125-
137, 2002

[7] Özalp Babaoglu, Hein Meling and Alberto Montresor, Anthill: A Frame-
work for the Development of Agent-Based Peer-to-Peer Systems. Pro-
ceedings of the 22nd International Conference on Distributed Computing
Systems, Vienna, Austria, 2002

[8] Béat Hirsbrunner, Michèle Courant, Amos Brocco, and Pierre Kuonen,
SmartGRID: Swarm Agent-Based Dynamic Scheduling for Robust, Reli-
able, and Reactive Grid Computing. Working Paper 06-13, Department
of Informatics, University of Fribourg, Switzerland, October 2006

[9] G. Di Caro, Ant Colony Optimization and its application to adaptive
routing in telecommunication networks PhD thesis, Faculté des Sciences
Appliquées, Université Libre de Bruxelles, Brussels, Belgium, 2004

[10] G. Di Caro, F. Ducatelle, and L.M. Gambardella, Swarm intelligence for
routing in mobile ad hoc networks, Proceedings of Swarm Intelligence
Symposium (SIS 2005), IEEE, 2005

[11] M.A. Salehi, and H. Deldari, Grid Load Balancing using an Echo System
of Intelligent Ants, Proceeding (517) Parallel and Distributed Computing
and Networks - 2006, Innsbruck, Austria, 2006

[12] Dan Wang, A resource discovery model based on multi-agent technology
in P2P system, Proceedings of Intelligent Agent Technology (IAT 2004),
IEEE, 2004

[13] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, The Swarm
simulation system: a toolkit for building multi-agent simulations, Working
Paper 96-06-042, Santa Fe Institute, Santa Fe, 1996

[14] Bryan Horling and Victor Lesser and Regis Vincent, Multi-Agent System
Simulation Framework, 16th IMACS World Congress 2000 on Scientific
Computation, Applied Mathematics and Simulation, August 2000, EPFL,
Lausanne, Switzerland, http://mas.cs.umass.edu/paper/186

[15] The JXTA Project Home Page, http://www.jxta.org
[16] D. Rossier-Ramuz, Towards Active Network Management with Ecomo-

bile, an Ecosystem-inspired Mobile Agent Middleware, Department of
Informatics, University of Fribourg, PhD thesis no.1392, October 2002.

[17] Junwei Cao, Stephen A. Jarvis, and Subhash Saini, ARMS: An agent-
based resource management system for grid computing, Scientific Pro-
gramming 10(2): 135-148, 2002

[18] Junwei Cao, Self-Organizing Agents for Grid Load Balancing, GRID
2004: 388-395, Pittsburgh, 2004

[19] M.Resnick, Turtles, Termites, and Traffic Jams: Explorations in Mas-
sively Parallel Microworlds, MIT Press, 1994

[20] Swiss Hasler Foundation Website, http://www.haslerstiftung.ch
[21] Solenopsis Website, http://diuf.unifr.ch/pai/solenopsis


