
ozmos: Bio-Inspired Load Balancing in a
Chord-based P2P Grid

Amos Brocco
Institute of Telematics, Karlsruhe Institute of Technology (KIT) Zirkel 2, D-76128 Karlsruhe, Germany

brocco@tm.uka.de

ABSTRACT
Load balancing in distributed computing systems is an im-
portant requirement to make efficient use of all available re-
sources. Envisioning a increase in the scale and dynamicity
of future grid systems, fully distributed autonomic solutions
are required to address this problem. In this regard, we
introduce a load balancing mechanism, called ozmos, that
follows the principle of osmosis to relocate tasks between
nodes in a P2P based grid. Our solution is based on a Chord
overlay upon which bio-inspired agents are deployed to share
information about the status of the grid as well as to resched-
ule tasks between nodes. The key based routing capabilities
of Chord are exploited to discover other nodes in the overlay,
and to efficiently support relocation of incompatible tasks in
heterogeneous grids. By means of a simulation study con-
ducted in various scenarios, we highlight the efficacy of the
proposed algorithm in achieving system-wide load balance
in grids of different scales, and with both homogenous and
heterogeneous resources.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling

General Terms
Algorithms, Performance, Experimentation

Keywords
Load Balancing, Grid, P2P, Bio-inspired Algorithms

1. INTRODUCTIONThe convergence of grid and peer-to-peer systems [1] has
introduced several opportunities and new challenges in the
realm of grid computing. On one hand, this trend has
opened up the possibility of building distributed computing
systems with smaller investments for the underlying infras-
tructure, and with considerably larger scales. On the other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

hand, the assumptions about dependability, efficiency and
security of traditional grids have been voided due to the
inherent dynamic nature of the P2P paradigm. As a con-
sequence, research has focused on exploiting the benefits of
decentralization and peer-to-peer solutions while trying to
solve the aforementioned issues.

Effective grid computing relies on efficient allocation of
tasks on the most appropriate resources [2]. To achieve that,
schedulers in traditional centralized grids exploit full knowl-
edge about the status of resources to optimally match user
demands (i.e. QoS agreements such as response time, price,
etc.) with availability and usage policies set by resource
providers (i.e. security, resource utilization, etc.). While
such a centralized model is imposed by the business require-
ments set by virtual organizations, research has focused on
solutions that reduce deployment costs, increase reliability,
and meet dynamic users’ needs, envisioning flexible, auto-
nomic, and self-manageable grids [3]. Even in the light of
the recent move toward cloud platforms, which have evolved
from grids and typically rely on a grid computing infrastruc-
ture, problems such as adaptive scheduling and dynamic dis-
tribution of loads remain of great interest. In fact, as hinted
in [4], in order to support on-demand provisioning, both grid
and cloud computing infrastructures are likely to become
large-scale heterogeneous platforms with small providers co-
existing with larger ones. This shift will inherently involve
the development of new mechanisms for providing fully dis-
tributed efficient task allocation. To tackle this problem, in
this paper we present a fully distributed task load balancing
mechanism that employs bio-inspired techniques to provide
autonomous and self-organized operation. More specifically,
our solution is based on ant inspired agents that reorganize
tasks among the available resources following the principle
of osmosis. Osmosis is a self-regulatory process where a sol-
vent moves across a semi-permeable membrane separating
two solutions with different solute concentration. The algo-
rithm, named ozmos, is based on a variation of this process
(working the opposite way) that is executed on a Chord
[5] overlay to optimally relocate jobs between nodes both
in homogeneous and in heterogeneous grid systems. The
remaining of this paper is organized as follows: Section 2
discusses related work concerning distributed task load bal-
ancing with a focus on bio-inspired approaches. Section 3
presents the proposed load balancing solution, while Section
4 and 5 present the considered evaluation scenarios and dis-
cuss the respective results. Finally Section 6 summarizes
our conclusions on this work and provides some insights on
future work.

2. RELATED WORKResource management and scheduling middlewares for grid
computing deal with large pools of dispersed resources; de-
spite such great availability, it is still important to make ef-
ficient use of computing power, namely by assigning jobs to
the most appropriate nodes and by avoiding to overload just
some systems. Accordingly, in this section we present a brief
review of the existing rich literature concerning decentral-
ized scheduling and load balancing in grids. Job scheduling
in grids is managed by meta-schedulers, which consider all
available resources as a whole, and operate over the existing
local scheduling policies of each node. Traditional grid solu-
tions, such as [6, 7], employ centralized or hierarchical meta-
schedulers that can exploit complete knowledge about the
available resources, enabling optimal scheduling decisions.
Unfortunately, several issues derive from these designs, such
as scalability bottlenecks, and single points of failure that
affect the robustness of the whole grid. In this regard, there
has been a great effort in researching distributed scheduling
solutions that can overcome the flaws of centralized systems,
while still providing optimal scheduling with minimal com-
munication overhead [8]. Furthermore, load balancing can
be performed either statically or dynamically [9]: whereas
dynamic systems employ live information to balance the sys-
tem load at run time, static load balancing solutions assume
that the characteristics of the resources are known a-priori
and do not change during execution. Such assumptions are
difficult to ensure in fully distributed systems [10], and the
focus of our research is thus on decentralized dynamic load
balancing.

The load balancing problem is closely related to schedul-
ing, hence several distributed scheduling frameworks already
include load balancing capabilities; examples include [11],
which introduces a fully distributed meta-scheduling proto-
col based on an cost-for-execution heuristic, [12], where a
node retains jobs or reschedules them to its neighbors ac-
cording to the actual load, and [12], where each node em-
ploys an heuristic based on local load to decide if a job is
to be delegated to a neighbor. In [13] an adaptive load bal-
ancing strategy for a super-peer based P2P grid is detailed,
with super-peers managing the resources of other nodes and
exchanging information among each other. For each job,
super-peers determine the estimated completion times for
each of the neighboring nodes, and eventually migrate the
job to the most appropriate one. The solution presented in
[14] employs decentralized and adaptive scheduling and load
balancing strategies to balance total execution time across
nodes. A similar direction is followed by [15], which proposes
an adaptive decentralized algorithm based on evolutionary
techniques to delegate job execution. Another example, pre-
sented in [16], discusses a P2P computing system based on a
resource trading model is presented. The proposed solution
replaces centralized resource management and job submis-
sion with a distributed matchmaking process that mimics
the operation of a trade market.

In order to overcome some of the complexity issues, bio-
inspired techniques are increasingly being considered. For
instance, in [17] the grid is considered as a self-organized
complex system where agents are used to provide decen-
tralized task scheduling. Nodes are organized hierachically,
and achieve load balancing by transferring jobs according
to the actual load of their neighbors. A notable example
of load balancing mechanism based on artificial life behav-
iors is Messor [18], which builds upon the swarm intelligence

[19] and ant colony [20] techniques. Messor employs ant-like
agents whose behavior is determined by the actual load of
a node. If the origin node is overloaded, the agent’s goal
is to find an underloaded node; on the contrary, the agent
will look for overloaded systems. Each agent wanders on
the network up until a node with the desired load is found
and the balancing can take place. Furthermore, agents col-
lect and share information about the load of visited nodes,
in order to direct subsequent agents toward nodes of major
interest. The algorithm proposed by Messor has inspired
the adoption of similar techniques in other platforms such
as ARMS [21], and [22]. In particular, ARMS employs an
swarm based solution coupled with a multi-agent resource
management system, where ants are exchanged by hierachi-
cally organized agents attached to local schedulers. A simi-
lar framework for distributed job scheduling is presented in
[23]: a multi-agent design is employed both for managing lo-
cal grid nodes and for discovering remote resources. Ant-like
agents are deployed upon submission of a task, and wander
on the network looking for suitable resources to reduce both
the overall makespan (the maximum time required to com-
plete all jobs) as well as the response time. In [24] two
distributed swarm intelligence based scheduling algorithms
are proposed. The first is based on the ant colony heuris-
tic and, similarly to Messor, employs agents that wander on
the network searching for the node which is best suited to
carry out a job. Ant agents leave pheromone trails on their
paths to indicate the fitness of each inspected resource. The
second algorithm implements a distributed version of the
particle swarm optimization paradigm [25], with jobs being
transferred toward nodes with the highest fitness. In the lit-
erature it is also possible to find some examples of synergies
between traditional P2P systems and bio-inspired solutions
tackling the problem of grid scheduling and load balancing.
For example, in [26] a complete meta-scheduling architec-
ture based on ant-like agents executing on a DHT overlay
is presented; like in Messor, load balancing is provided by
the collaborative behavior of swarm agents. The structured
overlay is used to maintain multicast communication trees
and efficiently track submitted jobs.

Following similar concepts, we propose a system based on
bio-inspired agents wandering on a structured P2P overlay.
In contrast to the aforementioned Messor examples, our so-
lution relies on simple interactions between adjacent nodes
and the structure of the P2P overlay, and does not depend on
agent-based resource discovery mechanisms. Furthermore
the key-based routing is employed to quickly move agents
between nodes, whereas the overlay management protocol
is exploited to organize and group nodes according to their
capabilities in order to efficiently support both homogenous
and heterogeneous tasks and resources.

3. OZMOS PROTOCOLThe ozmos algorithm dynamically reallocates tasks among
a set of distributed resources in order to balance the over-
all load. The balancing process is completely decentralized,
and is supported by the activity of ant-like agents that are
executed by nodes on a Chord overlay. Each node manages
a batch scheduling queue and can execute one or more tasks
concurrently with different performance characteristics. We
assume that tasks are independent, non-divisible, and non-
preemptive. Our solution supports both homogeneous and
heterogeneous distributed computing: in a fully homoge-
neous scenario all tasks have the same requirements, and

each node is expected to be able to execute any task (with
the same run time performance). Conversely, in a fully het-
erogeneous grid each task has different requirements that
can be fulfilled only by some of the nodes, tasks have vary-
ing run times, and each resource has different performance
characteristics. In the following we detail the operation of
ozmos for both homogeneous and heterogeneous grids.

3.1 ChordChord [5] is a P2P overlay that implements a distributed
hashtable (DHT). The overlay is structured as a ring, and
each node is assigned a unique identifier. Within the ring,
nodes are ordered according to their identifier, and store
pointers to their successors and to their predecessor; fur-
thermore, each node maintains a finger table with addresses
of several remote nodes to quickly forward messages toward
distant regions of the network. As a distributed storage sys-
tem, data is put on the node whose identifier is the closest
to that assigned to the data. In an overlay of size N , Chord
is able to route a message to destination in O(logN) hops.

3.2 Local and remote concentrationsThe load-balancing problem is concerned with distribut-
ing tasks among the available resources so that each node is
equally loaded. Because we consider a network where each
node has different performance characteristics, we describe
the actual load of each node with a concentration value,
which represents the time required to process the whole
scheduling queue. The concentration cM on a node M is
computed according to the following formula:

cM =

∑
j∈T

jert

speedM × cpuM

where T is the set of all scheduled jobs, jert is the estimated
running time of task j in seconds (or remaining time for run-
ning jobs), speedM is the speed index of the node and cpuM

is the maximum number tasks that can be concurrently ex-
ecuted. We assume that a node with baseline performance
speedM = 1 is used to determine jert (for example by means
of a profiling tool such as PACE [27]); generally a node with
speedM = tM will complete jobs tM times faster than the
baseline system. We further define the performance index
of a node M as perf M = speedM ×cpuM , and its normalized
concentration as ċM = c× perf M .

Nodes determine their load balancing actions by compar-
ing the local concentration with that of nodes in the network.
Accordingly each node receives information from its prede-
cessor (p) and successor (s) on the ring, as well as from a ran-
dom remote node called probe (r). For eachN ∈ {p, s, r}, we
assume that local values for ċN (initially set to∞) and perf N
(initialized as 1) are available. The predecessor and succes-
sor concentration values provide information about the local
load balancing state, whereas the probe offers a more global
overview. Because the p and s links match the underly-
ing ring structure, they are relatively stable; meanwhile the
probe link is periodically updated and is thus more volatile.

3.3 Resource identifiersIn homogeneous grids, each node is assigned a random
unique identifier of m bits (typically m = 160) as in Chord.
To deal with heterogeneous resources we restrict ourselves
to a finite number of classes s ≥ 0, and we segment the key
space into s different classes. The identifier of each node
is generated so that both the class identifier as well as a

randomized key are encoded. Given s = 2k as the maximum
number of classes, the k highest-order bits of the Chord
identifier are replaced by the value of the class (Figure 1).
As a result, nodes belonging to the same class connect to
adjacent positions in the ring. Tasks are similarly assigned
unique identifiers whose prefix matches the class of resources
required for their execution. In the present implementation
of ozmos we have not considered the case of overlapping
classes. Nonetheless, minor adjustments to the algorithm
can be introduced to allow load balancing between diverse
but overlapping classes if those map on adjacent regions in
the ring.

Figure 1: Node identifier with class field

3.4 AgentsThe goal of each node is to minimize the distance be-
tween its local concentration and that of its neighbors by
offloading tasks to other nodes in the grid. To achieve this,
ozmos employs three types of agents with different behav-
iors. Agents have access to the local concentration values,
to the scheduling queue, as well as to Chord data structures
such as the address of the predecessor, the successor list,
and the finger table. In this respect, we don’t currently ad-
dress security issues, notwithstanding that these aspects are
of great importance in grid computing. We are aware that
solutions that can be deployed into real-world grids must
take care of the problem, for example by verifying the origin
of agents and tasks. Furthermore, our protocol is currently
not concerned with recovery from node or network failures,
hence queued and executing tasks would be lost if a node
fails. Finally, for the actual job migration we assume that
an underlying data transfer mechanism is available.

Figure 2: Example of heterogeneous grid (performance in-
dices omitted)

Notification.
The task of Notification agents is to inform both ring

neighbors and a remote node about the local concentration
value and performance characteristics. Nodes periodically
send a Notification agent to their predecessors, successors,
and to randomly chosen nodes. Whereas the predecessor
and successor addresses are known, the random node’s ad-
dress is drawn from the local finger table and the succes-
sors’ list. To support load balancing in heterogeneous grids,
updates don’t take place if the target’s resource class is dif-
ferent than that of the origin node, which means that the
corresponding remote concentration value will remain equal
to ∞. This condition can be verified by checking the tar-
get’s identifier before transmitting the agent (in the case of

successors and predecessors), and by choosing the random
node only within the admissible identifiers. As shown in Al-
gorithm 1, the agent is given a target node to migrate to
(either p, s or the probe node r). The agent reads the local
normalized concentration and performance index values and
subsequently migrates to the target node, where the corre-
sponding information is updated. On the target node, if the
source address corresponds neither to the predecessor, nor
to the successor, the probe information is updated. The ac-
tivity of Notification agents is thus twofold: on one hand it
ensures that adjacent nodes on the ring know the concen-
tration of their respective neighbors; on the other hand it
provides each node with the address of a random peer that
represents an additional possibility for off-loading tasks to.
Figure 2 depicts an example of heterogeneous grid. Nodes
X and Y belong to the same resource class 8, and thus share
their actual local concentration values. On the contrary, Y
will not receive updates from Z, hence the concentration
value for its successor will remain equal to ∞. Finally, node
X has a valid probe address, and has thus received the cor-
responding concentration value ċr.

Algorithm 1 Notification Agent

Let: this, the source node;
Let: target, the target node (either p, s, or a random one);
Let: migrate(t), function to migrate to node t;
1: x := this
2: c := ċthis
3: v := perf this
4: migrate(target)
5: if x = s then
6: ċs := c
7: perf s := v
8: else
9: if x = p then
10: ċp := c
11: perf p := v
12: else
13: r := c
14: ċr := c
15: perf r := v
16: end if
17: end if

Osmosis.
Osmosis agents are used to migrate tasks from a node with

high concentration toward a node with low concentration.
Each node M periodically determines the osmotic pressure
toward other nodes, by computing the difference between
the local concentration and that of each node n ∈ {p, s, r},
namely cM − ċn

perfn
. The node x corresponding to the high-

est positive difference is chosen as candidate for the load
balancing process. In order to level local concentrations,
the node tries to reschedule some of the local jobs on the
remote node. However, because each task represents a dis-
crete indivisible entity, precise load balancing might not be
possible. Furthermore, the load balancing operation must
consider the performance of both nodes. As a consequence,
a node first computes the total estimated run time that must
be transferred to x as:

Tert→x =
(ċM × perf M)− (ċx × perf x)

perf M + perf x

A set of tasks J such that
∑

j∈J jert ≈ Tert→x is selected
within the local scheduling queue; tasks in set J are migrated
toward node x with the following probability:

PJ→x = min(1, 1− (

∑
j∈J jert − Tert→x

ϵ× Tert→x
))

where ϵ is a user-defined threshold. The migration process
is carried out by Osmosis agents, whose behavior is detailed
in Algorithm 2. The agent is given the list of task descriptors
and a direction to follow in the ring. When the agent arrives
on the target node the local concentration is checked: if this
value is lower than that of the succeeding one (according
to the actual traveling direction), the tasks carried by the
agent are dropped and locally scheduled. On the contrary,
the agent can migrate for a number of steps further in the
ring. This behavior ensures that tasks are released on the
least loaded node, hence improving the load balancing result.
In a heterogeneous system forwarding terminates when the
successor of the current node belongs to a different resource
class, because the reported concentration would be infinite.
If the target is the probe node, the traveling direction on
the ring is determined by following the lowest concentration
after the initial migration. The operation of the Osmosis
agent can be viewed as the behavior of an ant following a
pheromone trail, with lower concentrations being preferably
chosen.

Algorithm 2 Osmosis Agent

Input: J , set of tasks to be migrated;
Input: dir, direction of movement (either → p, → s, → r);
Input: steps, maximum number of allowed hops in the ring;
Let: migrate(t), function to migrate to node t;
Let: this, the current node;
Let: next(d), the following node in the d direction;
Let: schedule(t), schedules task t on the current node;

1: migrate(next(dir))
2: if dir =→ r then
3: if

ċnext(→p)

perf next(→p)
>

ċnext(→s)

perf next(→s)
then

4: dir :=→ p
5: else
6: dir :=→ p
7: end if
8: end if
9: while steps > 0 do
10: steps := steps− 1

11: if cthis ≥ ċnext(dir)
perf next(dir)

then

12: migrate(next(dir))
13: else
14: break
15: end if
16: end while
17: for all task ∈ J do
18: schedule(task)
19: end for

Relocation.

Algorithm 3 Relocation Agent

Input: R, list of tasks to be relocated;
Input: tclass, resources’ class of the tasks to be relocated;
Let: this, the current node;
Let: route(c), migrate to the first node in class c with

Chord’s key based routing;
Let: class(t), return the resources’ class of task t;
Let: schedule(t), schedule a task t on the current node;

1: route(tclass)
2: for all task ∈ tasks do
3: schedule(task)
4: end for

In a heterogeneous grid, tasks might be submitted to a
node whose resource profile does not fulfill the requirement
for execution. Accordingly, a relocation mechanism is re-
quired to reschedule incompatible tasks on nodes of the ap-
propriate class. The Relocation agent detailed in Algorithm
3 is generated by nodes in order to dispose such jobs by mi-
grating them into another scheduling queue. In contrast to
the Osmosis agent, the Relocation one employs key based
routing of the underlying Chord to directly jump to a node
whose class is compatible with the tasks being relocated.

4. EVALUATIONTo validate the load balancing performance of ozmos, sev-
eral experimental evaluation scenarios, with both homoge-
neous and heterogeneous resources, have been considered.
To take into account the most prominent characteristics of
the load balancing problem, different aspects are analyzed:
convergence rate, scalability, stability, and network over-
head. All experiments are conducted using the OverSim [28]
platform, which enables faithful simulation of the underly-
ing network characteristics. We assume that agents relocate
only task descriptors, hence our simulations do not take into
account the actual task data transfer. In this section the de-
tails of the simulation setup are presented and discussed.

General setup.
A total of 5 simulation runs are performed for each ex-

periment, with each run covering 3 hours of activity. Unless
otherwise stated, each experiment is conducted on grid con-
sisting of 512 nodes bound to a Chord P2P overlay. At the
beginning of each experiment, nodes join the overlay with
a frequency of 1 node every second. Tasks are submitted
once all nodes are connected to the overlay. In all exper-
iments the algorithm parameters have been kept constant.
The osmosis threshold ϵ is set to 1.05, which means that
load balancing occurs with probability < 1 as soon as the
total run time length of the tasks to be migrated exceeds
by 105% the requested amount. Nodes notify their neigh-
bors about the local concentration and performance every
30 seconds on average. Osmosis is performed (when neces-
sary) with a frequency of one every 60 seconds. Relocation
of incompatible jobs is performed every 120 seconds on av-
erage: only one class of incompatible jobs is relocated at a
time. A detailed sensitivity analysis of these parameters has
not yet been carried out, and is left as future research work.
All nodes communicate asynchronously, and throughout all
experiments we assume that the network is reliable and does
not experience neither communication nor node failures. As
we are only interested in the load balancing of scheduling

queues, job execution is not considered in the simulation.
Finally, Osmosis agents can travel at most 10 hops in the
overlay looking for lower concentration nodes.

Full homogeneous scenarios.
In homogeneous scenarios all nodes are grouped into a

single resource class, and hence have equal characteristics
and are able to execute any of the submitted task with a
performance of at most 1 task at a time (cpuM = 1) with
speedM = 1. One node is given 50000 tasks at the beginning
of the simulation, with a run time jert of 45 minutes for each
task. For scalability testing, experiments with 10000 tasks
are also conducted.

Full heterogeneous scenarios.
In heterogeneous scenarios both nodes and tasks are at-

tributed a random resource profile out of the 16 available
classes. Computing power of each node is randomly as-
signed: for each node, cpuM is uniformly chosen on the dis-
crete interval [1, 4], whereas speedM varies on a continuous
interval between 1 and 2. Task run times jert are chosen
uniformly at random in the continuous interval between 30
minutes to 1 hour. In each simulation run, 50000 jobs are
submitted to a random node (10000 in scalability experi-
ments).

Mixed scenarios.
To evaluate the influence of each factor of heterogeneity

(either different task run time, perf M , or resource class)
several intermediate scenarios are considered. Starting from
the full homogeneous settings, the performance of each ma-
chine is changed by assigning a random speedM and cpuM

to each node as in the heterogeneous setup. This configura-
tion bears similarities with typical desktop grid applications
like Folding@home 1 or SETI@home 2, where work units
submitted to each node have equal size and are of similar
complexity, but the actual run time depends on the hard-
ware configuration of each computer. A second scenario in-
volves experiments with varying task run times scheduled
on homogeneous hardware. Finally, load balancing of tasks
with equal jert on nodes with different resource classes but
homogeneous performance is evaluated.

Measurements.
The load balancing performance of the algorithm is de-

termined by the relative standard deviation (%RSD) of the
concentration. In homogeneous scenarios this value is com-
puted over all nodes, whereas in heterogeneous scenarios sep-
arate data is computed for each resource class and only the
maximum %RSD is considered. Regarding the stability of
the algorithm, the number of tasks that are relocated every
30 seconds is examined; this value also hints the amount of
traffic generated by the algorithm in terms of task descrip-
tors transmitted over the network. We also evaluate the
scalability of the algorithm in relation to two different axes:
overlay size and number of tasks. Concerning the first, re-
sults obtained in overlays of 256, 512, and 1024 nodes are
compared, whereas for the second, load balancing of 10000
and 50000 tasks are examined.

1http://folding.stanford.edu/
2http://setiathome.ssl.berkeley.edu/

Figure 3: Load balancing performance / Scalability (overlay
size)

5. RESULTSIn this section we present and analyze the results of the
previously discussed experiments. All the reported values
refer to an average across 5 simulation runs.

Load balancing performance.
The first set of results concerns both homogeneous and

heterogeneous scenarios with 50000 tasks, and aims at evalu-
ating the evolution of the relative standard deviation through-
out each simulation at different overlay scales (256, 512, and
1024 nodes). As shown in Figure 3, the %RSD rapidly con-
verges below 100% in all scenarios. It is interesting to note
that heterogeneous scenarios obtain better results, since the
number of nodes and tasks in each class is lower than in
the homogenous setup; more specifically, each class counts
an average of 3125 jobs as well as 16, 32, and 64 nodes in
overlays of size 256, 512, and 1024 respectively. This scale
difference allows for a faster relocation of tasks among all
compatible resources. Although not shown in the graph,
in the heterogeneous scenario an average of only 15 Relo-
cation agents are necessary to reschedule all incompatible
tasks (about 47000) to a node in the appropriate resource
class. It should be noted that this result is due to relocations
being carried out early in the simulation by the lone node
carrying the initial load.

Task count scalability.
Figure 4 illustrates the scalability of the system concern-

ing the number of tasks in both homogeneous and hetero-
geneous setups. In all experiments the size of the network
is 512 nodes. Surprisingly, a higher number of tasks im-
proves the convergence of the concentration’s %RSD: in ho-
mogeneous scenarios the difference is very slight (17.9% ver-
sus 26.8%), while in heterogeneous scenarios it is noticeably
larger (14% versus 62.24%). This fact can be attributed to
an increased number of balancing opportunities introduced
by additional tasks.

Stability.
An important aspect of load balancing is the convergence

toward a stable state where load is equally distributed among
all the resources and no further rescheduling activity is per-
formed. Because of the stochastic nature of some parts of

Figure 4: Scalability (task count)

the ozmos algorithm, perfect stability cannot be possible.
Moreover, a deterministic stable behavior might leave the
system in an unbalanced state due to the presence of local
minima. We determine the stability of our solution by ana-
lyzing the number of tasks that are migrated across the over-
lay during the simulation. This results also provides a rough
figure of the network overhead, as migration of task descrip-
tors accounts for the largest part of the traffic generated by
the algorithm (the rest owing to Chord’s signaling messages
as well as Notification and Relocation agents). Figure 5 il-
lustrates the amount of rescheduled tasks in homogeneous
and heterogeneous overlays with different sizes. In homoge-
neous overlays the system is more unstable: this result can
be attributed to the fact that the algorithm frequently tries
to balance load differences equal to the size of each task,
which leads to bouncing effects. On the contrary, in hetero-
geneous scenarios more diverse load balancing possibilities
(with different task run times and node performance) lead to
a more stable end result. These differences are also reflected
in the variance measured across different simulation runs:
for example, in overlays with 1024 nodes variances of 92%
and 11% of the number of rescheduled tasks where observed
after 10800 seconds in the homogeneous and heterogeneous
scenarios respectively. Concerning the total number of tasks,
Figure 6 shows that heterogeneous scenarios again perform
better than their homogeneous counterparts. As expected, a
larger amount of tasks results in more tasks being migrated
in order to achieve system wide load balance.

From homogeneous to heterogeneous.
Figure 7 shows the convergence of the %RSD in different

scenarios with varying degrees of heterogeneity. The algo-
rithm is able to deal well with the differences in the run
time performance of each node and of task run times, show-
ing similar results as in the full homogeneous scenario. The
influence of heterogeneous resource classes is evident when
the corresponding scenario is compared to other results. The
behavior of the algorithm in such different situations is re-
flected in the stability results depicted in Figure 8: hetero-
geneity leads to a faster convergence toward a stable state;
however, the situation at the end of the simulation shows
little differences in all scenarios but the ones with heteroge-
neous resource classes.

Figure 5: Stability (increasing overlay size)

Figure 6: Stability (task count)

Figure 7: Load balancing performance (heterogeneity factors)

6. CONCLUSIONSIn this paper we presented a fully distributed algorithm
and protocol for load balancing in homogeneous and hetero-
geneous grids based on the P2P paradigm. The proposed
solution, called ozmos follows the principle of osmosis to
relocate tasks among adjacent nodes that are connected by
means of a Chord structured overlay. To share informa-

Figure 8: Stability (heterogeneity factors)

tion about the state of the grid as well as to relocate tasks,
bio-inspired ant-like agents are employed. The key based
routing capability of Chord is used to discover other nodes
in the overlay, and to efficiently support relocation of incom-
patible tasks in heterogeneous grids. The proposed mecha-
nism naturally supports heterogeneous resources, with the
overlay organized such that resources with similar profiles
are adjacent on the ring. The load balancing performance
of the algorithm has been validated in different experimen-
tal scenarios, with both homogeneous and heterogeneous re-
sources. The scalability of our solution concerning both the
overlay size as well as the number of scheduled tasks was
also confirmed. Future work will include a detailed sensi-
tivity analysis of the parameters of the algorithm as well
as an in depth experimentation with a more realistic grid
setup which would include task execution and dynamic net-
work conditions. The present design is also open to further
extension, for example with the introduction of a locality-
aware [29] overlay structure.

7. ACKNOWLEDGMENTSThis research has been carried out thanks to the financial
support of the Swiss National Science Foundation, fellowship
Nr. 134285.

8. REFERENCES[1] Ian Foster and Adriana Iamnitchi. On death, taxes,
and the convergence of peer-to-peer and grid
computing. 2003.

[2] Jennifer M. Schopf. Ten actions when grid scheduling:
the user as a grid scheduler. 2004.

[3] A. Andrzejak, A. Reinefeld, F. Schintke, T. Schütt,
C. Mastroianni, P. Fragopoulou, D. Kondo,
P. Malecot, G. Cosmin Silaghi, L. Moura Silva,
P. Trunfio, D. Zeinalipour-Yazti, and E. Zimeo. Grid
architectural issues: State-of-the-art and future
trends. CoreGRID White Paper, May 2008.

[4] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu.
Cloud Computing and Grid Computing 360-Degree
Compared. In 2008 Grid Computing Environments
Workshop. IEEE, November 2008.

[5] Ion Stoica, Robert Morris, David Karger, Frans M.
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.

In SIGCOMM ’01, volume 31, New York, USA,
October 2001. ACM Press.

[6] Ian Foster and Carl Kesselman. Globus: A
metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications
and High Performance Computing, 11(2), 1997.

[7] Mathilde Romberg. The unicore architecture: seamless
access to distributed resources. In High Performance
Distributed Computing, 1999.

[8] K. Christodoulopoulos, V. Sourlas, I. Mpakolas, and
E. Varvarigos. A comparison of centralized and
distributed meta-scheduling architectures for
computation and communication tasks in grid
networks. Comput. Commun., 32, May 2009.

[9] Janhavi Arvind Baikerikar, Sunil K. Surve, and
Sapna U. Prabhu. Comparison of load balancing
algorithms in a grid. Data Storage and Data
Engineering, International Conference on, 0, 2010.

[10] K. Lu, R. Subrata, and A.Y. Zomaya. An efficient
load balancing algorithm for heterogeneous grid
systems considering desirability of grid sites. In
Performance, Computing, and Communications
Conference, IPCCC 2006, 2006.

[11] Amos Brocco, Apostolos Malatras, Ye Huang, and
Beat Hirsbrunner. Aria: A protocol for dynamic fully
distributed grid meta-scheduling. ICDCS 2010, 2010.

[12] Manish Arora, Sajal K. Das, and Rupak Biswas. A
de-centralized scheduling and load balancing
algorithm for heterogeneous grid environments. In
ICPPW ’02: Proceedings of the 2002 International
Conference on Parallel Processing Workshops,
Washington, DC, USA, 2002. IEEE Computer Society.

[13] Po-Jung Huang, You-Fu Yu, Kuan-Chou Lai, and
Chao-Tung Yang. Distributed adaptive load balancing
for p2p grid systems. In Pervasive Systems,
Algorithms, and Networks (ISPAN 2009), 2009.

[14] Ruchir Shah, Bhardwaj Veeravalli, and Manoj Misra.
On the design of adaptive and decentralized load
balancing algorithms with load estimation for
computational grid environments. IEEE Transactions
on Parallel and Distributed Systems, 18(12), 2007.

[15] Alexander Fölling, Christian Grimme, Joachim
Lepping, and Alexander Papaspyrou. Decentralized
grid scheduling with evolutionary fuzzy systems. In
Job Scheduling Strategies for Parallel Processing.
Springer Verlag, 2009. Lect. Notes Comput. Sci.
vol. 5798.

[16] Rohit Gupta, Varun Sekhri, and Arun K. Somani.
Compup2p: An architecture for internet computing
using peer-to-peer networks. IEEE Trans. Parallel
Distrib. Syst., 17, November 2006.

[17] Arjav J. Chakravarti and Gerald Baumgartner. The
organic grid: Self-organizing computation on a
peer-to-peer network. In ICAC ’04: Proceedings of the
First International Conference on Autonomic
Computing, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] Alberto Montresor, Hein Meling, and Özalp Babaoǧlu.
Messor: load-balancing through a swarm of
autonomous agents. In Proceedings of the 1st
international conference on Agents and peer-to-peer

computing, AP2PC’02, Berlin, Heidelberg, 2003.
Springer-Verlag.

[19] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
intelligence: from natural to artificial systems. Oxford
University Press, Inc., New York, NY, USA, 1999.

[20] Marco Dorigo and Thomas Stützle. Ant Colony
Optimization. Bradford Company, Scituate, MA, USA,
2004.

[21] Junwei Cao. Self-organizing agents for grid load
balancing. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, GRID
’04, Washington, DC, USA, 2004. IEEE.

[22] Mohsen Amini Salehi and Hossain Deldari. Grid load
balancing using an echo system of intelligent ants. In
Proceedings of PDCN’06, Anaheim, CA, USA, 2006.

[23] Diego Castagna Francesco Palmieri. Swarm-based
Distributed Job Scheduling in Next-Generation Grids.
Springer, 2007.

[24] Azin Moallem and Simone A. Ludwig. Using artificial
life techniques for distributed grid job scheduling. In
Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, New York, NY, USA, 2009.
ACM.

[25] Riccardo Poli, James Kennedy, and Tim Blackwell.
Particle swarm optimization. Swarm Intelligence, 1(1),
June 2007.

[26] Kay Dörnemann, Jörg Prenzer, and Bernd Freisleben.
A peer-to-peer meta-scheduler for service-oriented grid
environments. In Proceedings of the first international
conference on Networks for grid applications, GridNets
’07, Brussels, Belgium, 2007. ICST.

[27] Graham R. Nudd, Darren J. Kerbyson, Efstathios
Papaefstathiou, Stewart C. Perry, John S. Harper, and
Daniel V. Wilcox. Pace–a toolset for the performance
prediction of parallel and distributed systems.
International Journal of High Performance Computing
Applications, 14(3), 2000.

[28] Ingmar Baumgart, Bernhard Heep, and Stephan
Krause. OverSim: A flexible overlay network
simulation framework. In Proceedings of 10th IEEE
GI/INFOCOM 2007, Anchorage, AK, USA, May
2007.

[29] Weiyu Wu, Yang Chen, Xinyi Zhang, Xiaohui Shi,
LinCong, Beixing Deng, and Xing Li. Ldht:
Locality-aware distributed hash tables. In Information
Networking, 2008. ICOIN 2008. International
Conference on, 2008.

