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Abstract—Resource management and scheduling has

proven to be one of the key topics for grid computing.

Nowadays, the resource management field is subdivided into

low-level and high-level approaches. While low-level re-

source management systems normally concern the schedul-

ing activities within a single virtual organization, high-level

schedulers focus on the large scale resources utilization

with unstable resource availability, low reliability networks,

multi-policies, multi-administrative domains, etc.

In this paper, we propose a decentralized framework

named SmartGRID to tackle high-level grid resource man-

agement and scheduling. Within the SmartGRID frame-

work, swarm intelligence algorithms are used for resource

discovery and monitoring, standard protocols and schemes

are adopted for scheduler interoperability, and an embedded

plugin mechanism is provided to utilize multi-type external

scheduling strategies. With a clearly decoupled layered ar-

chitecture, SmartGRID has been designed to be a generic

and modular environment to support intelligent and inter-

operable grid resource management upon a volatile, dynam-

ics, and heterogeneous grid computing infrastructure.

Index Terms—Grid, Scheduler Interoperability, High-

level Scheduling, Swarm Intelligence, Ant, Grid Commu-

nity.

I. Introduction

Grid computing means coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual or-
ganizations [1]. Grid environments contain a large number
of complex services with variable functionalities. The inte-
gration of these services requires a flexible, extensible, and
consensual resource management and scheduling solution,
which is unavailable yet.

For a precise definition and categorization of diverse
scheduling responsibilities, [2] proposed the expressions
’high-level’ scheduler to denote a scheduler that is actually
negotiating with another scheduler for possible job alloca-
tion, and ’low-level’ resource management system for the
part focusing on local job allocation and execution within
each single virtual organization (VO).

Generally, resource owners of diverse VOs participate
in a grid environment by providing resources with specific
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strategies. In this context, low-level resource management
systems are responsible for assigning jobs to appropriate
resources found in the same VO; on the other hand, high-
level schedulers concern with scheduling events interaction,
negotiation and allocation amongst multiple organizations.

SmartGRID [3] [4] is a cooperative project aiming at
bringing a decisive increase in efficiency, robustness, and
reliability regarding the volatile, dynamics, and heteroge-
neous grid computing infrastructure. SmartGRID com-
prises three parts: the Smart Resource management layer
(SRML), the Smart Signaling layer (SSL), and the Data
Warehouse Interface (DWI).

The Smart Resource Management Layer (SRML) is an
interoperable grid scheduler community composed of en-
gaged decentralized high-level schedulers named MaGate1,
which are modular designed for easy extension. With the
infrastructure information retrieved from the DWI, MaG-
ates discover and connect to each other, and collaborate to
construct an integrated grid community, which is used to
bridge the heterogeneous grid systems with a consensual
view. Furthermore, the grid community can evolve dy-
namically, and recover a failed grid section automatically.

Information about available resources and network sta-
tus is gathered by the Smart Signaling Layer (SSL), and
then put into DWI’s distributed data storages. Being
based on swarm intelligence algorithms, the SSL is com-
posed by an overlay network of Nests that provide the run-
time environment for the execution of ant mobile agents.
This approach provides an adaptive and robust signaling
mechanism, supporting monitoring of the grid and resource
discovery.

The remainder of the paper is organized as follows: in
Section II, an overview of several existing scheduling ap-
proaches, along with the motivation of SmartGRID are
introduced. Section III explains in detail the SmartGRID
framework architecture, vision, and intended implemen-
tation. A typical scheduling scenario is depicted in Sec-
tion IV. Conclusions and future work are presented in
Section V, and acknowledgements are presented in Sec-
tion VI.

II. Related Works

Efficient high-level grid scheduling solution is critical for
large scale grid environments that spread over multiple ad-
ministrative domains. A number of approaches on this
topic have been proposed.

GridWay [5] is a high-level scheduler inside the Globus
Toolkit that provides abundant scheduling policies with

1 MaGate stands for ’Magnetic Gateway’ of grid system
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a modular structure. In order to avoid scheduling self-
competition, GridWay only allows one scheduler to manage
each virtual organization.

gLite WMS [6] is the scheduler used in the EGEE [7]
project. It has two very interesting policies, eager policy
and lazy policy. WMS accepts jobs described in JDL [8],
stores them in its own task queue, and submits jobs to a
computational grid through Condor-G [9].

Meta-Scheduling Service (MSS) [10] is a high-level sched-
uler developed within the VIOLA project [11]. MSS is
an advanced high-level scheduler with pre-defined policies,
and designed to be middleware independent. MSS current
version is implemented upon Unicore USite architecture.

Agent-based Scheduler Framework (ASF) [12] is a
bottom-up designed grid scheduling framework that con-
sists of a discreet meta-scheduler and a series of autonomic
agents attached to each local resource manager. ASF
achieves scheduling with closely local information.

In addition, new scheduling approaches composed of sev-
eral sub- systems, such as D-Grid (MMS, WSS) [13] and
IANOS (ISS and MSS) [14] are being proposed. Such sys-
tems are compliant with the emerging standard structure
of general high-level schedulers, such as ’Teikoku’ [15] and
’Scheduling Instance’ [16].

Existing high-level schedulers are set up to bridge the
communication gap amongst diverse existing low-level re-
source management systems. Different strategies are
adopted to decide where the grid jobs should be sent for
further disposal. However, due to the general problem of
lack of grid infrastructure information, there are two great
assumptions for their usage scenarios: first, the grid scope
is already known; second, only one scheduler exists in each
known grid system.

In order to overcome the dilemma mentioned above, with
respect to existing grid scheduling systems, SmartGRID
proposes a decentralized and interoperable grid schedul-
ing framework, which integrates the local infrastructure
information provided by swarm intelligence technology to
construct a consensual grid community.

Swarm intelligence is a branch of artificial intelligence
that focuses on distributed collaborative algorithms in-
spired by the behavior of swarms of insects. Bioinspired
solutions have already been successfully applied to several
network routing problems [17], [18], as well as for resource
discovery in unstructured networks [19].

There also exist some examples of grid platforms ex-
ploiting swarm intelligence algorithms, and ant colony al-
gorithms in particular. A first example is represented by
Messor [20], a grid computation system built on the Anthill
framework [21]. Messor implements a distributed load bal-
ancing algorithm inspired by the behavior of a species of
ant. This algorithm is very popular, and other platforms
rely on similar algorithms to execute load balancing tasks.
For example, the ARMS [22] middleware is based on soft-
ware agents, and uses swarm based load balancing algo-
rithms.

In general, swarm algorithms are praised for their intrin-
sic distributed design, as well as for their adaptivity and

robustness in failure situations. These are undoubtfully in-
teresting aspects that can be exploited to provide a robust
monitoring mechanism and optimal resource discovery ser-
vices within the SmartGRID framework.

III. SmartGRID Framework

In this section, the SmartGRID Framework is intro-
duced. Firstly, the design goal and layered architecture
overview are presented. Then the SmartGRID community
infrastructure and SG-Node structure are illustrated, fol-
lowed by an in-depth discussion on each relevant element.

A. Design Goal

SmartGRID has been designed to be a generic and mod-
ular framework in order to support intelligent and interop-
erable grid resource management using swarm intelligence
algorithms and multi-type grid scheduling strategies. The
proposed solution is layer structured and aims at filling
the gap between grid applications, which act as the re-
source consumers, and the grid resource low-level manage-
ment systems, which behave as the resource providers. To
this purpose, SmartGRID proposes an autonomic and evo-
lutional grid community composed of SmartGRID Nodes
(SG-Node), which will be illustrated in the following sub-
sections.

B. Layered Architecture Overview

SmartGRID framework is structured into two layers
and one internal interface. The Smart Resource Manage-
ment Layer (SRML) is responsible for grid level dynamic
scheduling and interoperation to serve grid applications
with best use of the available computing resources. The
Smart Signaling Layer (SSL) is in charge of monitoring and
constituting knowledge on network and resources. Finally,
the Data Warehouse Interface (DWI) is used to mediate
the scheduling and signaling layers. The overall architec-
ture of the system is shown in Figure 1.
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Fig. 1. SmartGRID architecture overview
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C. Grid Community Infrastructure

As mentioned above, SmartGRID aims at constructing
an integrated high-level grid community. The grid com-
munity is constituted of all the connected and engaged
SG-Nodes. As shown in Figure 2, SG-Nodes can behave
different roles depending on their positions within the grid
community.

SG-Nodes can work as executors if they could recognize
and make use of local resources to dispose the appropriate
accepted scheduling requests, such as SG-Node B, C and
D.

SG-Nodes connecting to other high-level schedulers are
considered as routers, which can transport scheduling
events inside the grid community, such as SG-Node E.

SG-Nodes can also work as interfaces when used to in-
teract with grid users or applications, such as SG-Node
A.

Moreover, SG-Nodes can behave multiple roles during
their lifecycles; they can also implement all the possible
functionalities and be used as a full functional SG-Node,
such as SG-Node F.
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Fig. 2. SmartGRID community infrastructure

D. SG-Node Structure

To achieve our design goal with SmartGRID layered ar-
chitecture, each individual SG-Node is comprised of three
entities, each entity belonging to a separated layer:

• MaGate, is a part of SRML and acts as the gateway
of the SG-Node.

• SSL Nest, is a part of SSL and continuously constitutes
the knowledge of network and resources.

• DataStorage, which comes from DWI and fills the
communication gap between SRML MaGate and SSL
Nest.

The SG-Node internal structure is shown in Figure 3.
The MaGate of each SG-Node is responsible for collect-

ing resource capability information via low-level resource
management systems, middleware systems, or manual-
based methodology, and storing the obtained data into
the corresponding SG-Node DataStorage. Meanwhile, the
Nest of the same SG-Node dedicates to discover remote
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Fig. 3. The SG-Node internal structure overview

SG-Nodes by contacting remote SG-Node Nests. Once the
Nest connections are constructed, resource and scheduling
information stored inside the DataStorages could spread
over the relevant SG-Nodes, and the MaGates could rec-
ognize the existence of their neighborhood. Finally, the
grid community is established upon the negotiation and
interaction amongst MaGates from diverse SG-Nodes.

E. Smart Resource Management Layer

The Smart Resource Management Layer (SRML) con-
sists of the SmartGRID high-level schedulers named Ma-
Gate. MaGates are modular, and aim at being an open
structure, fully decentralized, and interoperable high-level
schedulers, capable of integrating diverse external grid
components easily.

The core value of MaGate is interoperability. Beyond the
high-level scheduler’s traditional functionality of dispatch-
ing scheduling decisions to low-level resource management
systems or middlewares, MaGates focus on the interoper-
ability of high-level schedulers, which facilitates negotia-
tion and transport scheduling events (requests, responses)
amongst diverse virtual organizations and grid systems.
In this context, MaGates empower the users to utilize re-
sources outside the already known grid systems, with fully
decentralized topology and high reliability.

The continuously updated and reliable information
within DataStorages contributed via the external compo-
nents, especially SSL Nests, provides the grid infrastruc-
ture information as the basis of MaGates’s interaction.
Furthermore, the MaGates’ interoperation is based on sev-
eral existing and merging protocols and standards, such as
WS-Agreement [23], JSDL [24] and SDL [25].

Finally, with the interoperation capability, MaGates
work together to construct an autonomic, evolutional grid
community, which can span the differences amongst multi-
type grids such as Enterprise Grids, HPC Grids and Global
Grids [16].

Besides the interoperable community, MaGates are also
designed to cover many other functionalities related to
high-level scheduling, and compliant to several existing
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high-level scheduler general models, such as ’Scheduling
Instance’. In order to be flexible and efficient, each indi-
vidual MaGate can only exhibit a subset of its capabilities
by launching corresponding components, depending on its
specific usage scenario.

To achieve the aforementioned design purpose, the Ma-
Gate comprises five separated components: the Kernel, the
Interface, the Community, the DRM, and the External, for
increasing system flexibility and compatibility. The com-
ponents are not monolithic and each component’s involved
services are also configurable. The MaGate component
structure is presented in Figure 4, and an in-depth de-
scription of each component follows.
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E.1 Kernel Component

Kernel Component is responsible for MaGate self-
management; it makes use of specific embedded or external
components to help reducing the cost and complexity of
owning a SG-Node. The Kernel Component covers several
essential services such as:

• LoadAnalyzer service utilizes different approaches
(embedded or external via External component) to
monitor and analyze system workload.

• JobAnalyzer service is used to parse diverse grid job
standards, e.g. JSDL.

• MatchMaker service utilizes multiple strategies (em-
bedded or external via External component) to make
scheduling decisions.

E.2 Interface Component

Interface Component provides interactive channels to
enable SG-Node features and functionalities accessible and
reusable by external grid applications and components. In-
terface Component relevant services includes:

• GUI-I service provides GUI (Web or Desktop client)
interface for grid users.

• CL-I service provides command-line interface for grid
users.

• App-I service provides an abstract interface for both
local and remote high-level grid applications and pro-
gramming models, e.g. POP-C++ [26].

• Info-I service provides the abstract information inter-
face to interact with external data storages.

E.3 DRM Component

DRM Component interacts with distributed low-level
resource management systems and middlewares located
within the grid community for job local execution. Instead
of replacing the existing local proprietaries and strategies,
the DRM Component provides a series of interfaces, which
support diverse low-level approaches, such as Globus, Uni-
core, and PBS.

E.4 Community Component

Community Component is a mandatory component for
MaGate. It acts as the grid scheduling connector that
transfers the scheduling requests and responses from one
grid section (logically or geographically) to another. It is
also strongly engaged to construct the dynamic and auto-
nomic grid community with help of other components (e.g.
SSL Nests). With the above capabilities, the Community
Component is capable of providing an abstract and reliable
grid view upon the real volatile, dynamic, and heteroge-
neous grid infrastructure. Considering the suggestion from
’Scheduling Instance’, Community Component groups five
services, which are the following:

• OutputRequest service describes and dispatches the
grid application requests that can’t be carried out by
the local SG-Node, to other SG-Nodes within the grid
community.

• InputRequest service accepts and analyzes the schedul-
ing requests sent by other SG-Nodes.

• OutputResponse service is used to send the scheduling
decisions and results made by the local SG-Node back
to the scheduling request initiator.

• InputResponse service is used to accept scheduling de-
cisions made by the remote SG-Nodes, to which the
scheduling requests are dispatched.

• Community service focuses on interaction and nego-
tiation with other SG-Nodes within the grid commu-
nity. With the persistently updated grid information
retrieved from local DataStorage, CommunityService
is used to construct and maintain a consensual high-
level grid view.

E.5 External Component

External Component offers the plug-in mechanism for
MaGate. It could be considered as the multi- functional
outlet that helps underpin the MaGate by integrating ap-
propriate external grid services, components, algorithms
and strategies. Some typical services of External Compo-
nent are:

• ResourceDiscovery service focuses on grid resource
(machines, network bandwidth, etc.) information dis-
covery and collection from the infrastructure.
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• ResourceMonitoring service is responsible for monitor-
ing the availability and reliability of the discovered
resources.

• HardwareMonitoring service facilitates the MaGate to
utilize external hardware monitoring systems, such as
PAPI [27] or Ganglia [28], to scan and retrieve re-
source hardware information if supported by the local
systems.

• SchedulingPolicy service empowers the MaGate to
adopt diverse external scheduling policies for different
using scenarios.

• DataWarehouse service implements the Interface.Info-
I interface to provide a specific data access implemen-
tation for DataStorage.

It should be emphasized that, the SmartGRID SSL
strongly participates several important external services
as the default option, like e.g. ResourceDiscovery and Re-
sourceMonitoring services.

F. Smart Signaling Layer

The Smart Signaling Layer represents the interface from
and to the network of the SmartGRID architecture, and
provides information about the availability of other re-
sources on other nodes, as well as their status. From the
SSL point of view, a node has some partial knowledge of
the underlying logical network. Nodes within this par-
tial view are called neighbors. The SSL hides the com-
plexity and instability of the underlying network by offer-
ing reliable services based on distributed ant algorithms.
Ant algorithms do not require centralized control, and are
known to be robust and adaptable, thus well suited for
dynamic networks. Ants are defined as lightweight mobile
agents traveling across the network, collecting information
on each visited node. The activity of the SSL can be either
reactive or proactive. Reactive behaviors are controlled by
the upper layer: information is asynchronously transmitted
through a dataware house interface (discussed in Section
G). The same interface is used to provide feedback and re-
sults of the execution of algorithms. Continuous pro-active
activities, such as network monitoring, enhance the QoS of
provided services and the robustness of the whole system.

F.1 Solenopsis

Each node runs the Solenopsis middleware[29], providing
an environment for the execution of ant colony algorithms.
Solenopsis is a completely distributed ant platform con-
sisting of a programming language to develop ant agents,
a compiler and a virtual machine. The modular design
of the framework allows the implementation of pluggable
services that can be accessed by ants.

Figure 5 shows an overview of the framework. The mid-
dleware is comprised of a management daemon, service
libraries, and virtual machines. Everything runs on top of
the existing operating system. Services accessible by ants
varies from migration, to logging, or storage. In the figure,
the migration procedure is shown:

1. an ant is transferred to a node: the migration service
listens for incoming transfer requests and initiates the

Fig. 5. Solenopsis Framework Overview

transfer;
2. the migration services requests a new virtual machine

instance to the daemon;
3. a virtual machine is created, and the ant status (ex-

ecution stack) is restored;
4. an ant can request a migration by calling the migra-

tion service on the node;
5. the execution state is serialized and the ant is mi-

grated to a target node.
Solenopsis supports strong migration of ant agents: not

only is the code migrated from node to node, but also the
execution state. Because algorithm data can be carried
by the ant, it is possible to migrate an ant at any time
during the execution, without explicitly saving data. The
algorithm can check whether migration has succeeded or
failed by testing the return value of the migration function.

As the platform itself does not define the ant algorithms,
updates to the services offered by the SSL are just a mat-
ter of executing new species of ants. In the same spirit,
different types of ant can collaborate to offer new kind of
services without interfering with the existing species. Cur-
rent version of the Solenopsis middleware is implemented
in Java, and offers both completely decentralized execu-
tion of algorithms, as well as centralized and synchronized
execution suited for analysis and evaluation.

F.2 Bl̊atAnt Algorithm

There exist different methods to provide resource dis-
covery in distributed environments. Some solutions ex-
ploit particular topologies to optimize the search path [30].
Maintaining strict topologies can be difficult in highly dy-
namic networks, thus methods that can be implemented
on unstructured networks such as flooding-like or random
walk algorithms are preferred. To provide resource discov-
ery and efficient monitoring of the SmartGRID network, we
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Fig. 6. Diameter Evolution

propose to augment the existing topology with a minimal
number of new logical links in order to reduce the diameter
of the corresponding graph, thus minimizing the maximum
distances between peers. This graph augmentation is car-
ried out by the Bl̊atAnt collaborative ant algorithm [31],
[32]. The rewiring method is based on two rules, tied to
an user-defined parameter D.

Theorem 1 (Connection Rule) Two nodes ni and nj in
a graph G are connected by the algorithm if:

dG(ni, nj) ≥ 2D − 1 (1)

where dG(ni, nj) is the minimum distance between ni

and nj in G.
Theorem 2 (Disconnection Rule) Two connected nodes

ni and nj in a graph G, i 6= j are disconnected if there
exist another neighbor nk of ni such that:

dG′(nj , nk) + 1 ≤ D (2)

where G′ is a graph obtained from G, removing node ni.
Using these two rules, the algorithm is able to minimize

the diameter of a network to a value less than 2D − 1.
Under these assumptions, improved flooding or random
walk peer discovery algorithms can be implemented.

Figure 6 and 7 show the diameter evolution, respectively
the number of edges, resulting from the execution of the
algorithm on several topologies. Considered scenarios in-
clude a path graph, a two-dimensional grid and an hyper-
cube, each consisting of 1024 nodes, as well as a LAN net-
work topology of 1281 nodes. Simulations were run with
D = 6, and results show that Bl̊atAnt is able to reduce
the diameter of the network to a value ≤ 2D − 1 = 11,
by adding logical links between nodes while avoiding cre-
ating a fully connected network. Actual research focuses
on exploiting the characteristics of the resulting network
in order to provide optimized discovery and monitoring
services with minimal communication overhead.

G. Data Warehouse Interface

SmartGRID Data Warehouse Interface (DWI) is sup-
posed to act as the loosely coupled communication channel

Fig. 7. Edge Count

for connecting SRML and SSL. Considering the decoupled
data access approach, both SRML and SSL could benefit
by ignoring the implementation technologies of the other
side.

DWI is comprised of a series of distributed dataware-
houses named DataStorage that store both persistent and
cached grid information concerning network infrastructure,
resource status, grid scheduling request/response, strategy
parameters, SmartGRID specific events, etc. The grid in-
formation are presented with the help of existing schemes,
such as GLUE [33], JSDL [24] and SDL [25].

The SSL operates in response to triggers on updates of
data in the DataStorages. Similarly, information retrieved
by the SSL is put in the DataStorages and triggers notify
the SRML.

IV. Scheduling Scenario

This section describes a typical scenario of how the SG-
Nodes (one local, several remotes) collaborate to schedule
submitted sequential batch jobs within the SmartGRID
community. The ’sequential batch’ job type is chosen
to avoid unnecessary complexity and depict the typical
SmartGRID usage. The scenario comprises 5 phases.

Phase 1 Jobs submitting via grid users or applications.

1.1 Local SG-Node’s MaGate Interface.GUI-I or
Interface.App-I service receives the jobs submitted by
grid users or grid applications. The jobs are normally
described using JSDL.

1.2 MaGate Kernel.JobAnalyzer service verifies
whether the jobs’ description could be recognized and
disposed.

1.3 MaGate Interface.Info-I service contacts its spe-
cific implementation, e.g. External.DataWarehouse
service, to query local SG-Node capabilities, includ-
ing resource parameters, workload, low-level resource
management system type.

1.4 MaGate Kernel.MatchMake service utilizes spe-
cific policies (embedded or offered via Exter-
nal.SchedulingPolicy service) to determine whether
the local resource is competent to carry out each in-
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dividual received job.

Phase 2 If the local SG-Node is competent.
2.1 MaGate Kernel.MatchMake service utilizes specific

policies to determine where the received job should be
allocated locally.

2.2 Corresponding MaGate DRM service allocates the
job to the targeted local low-level resource manage-
ment system for execution.

2.3 Optional, MaGate External.HardwareMonitoring
service could be launched to monitor the interested
behavior data during the job execution.

2.4 Once the job execution is finished, the MaGate
Interface.Info-I service would retrieve the results and
store them into the local DataStorage.

2.5 The grid users and applications could access the ex-
ecution status data and results via interrelated inter-
face services, e.g. Interface.GUI-I or Interface.App-I.

Phase 3 If the local SG-Node is NOT competent.
3.1 MaGate Kernel.MatchMake service submits the

unmatched jobs’s requirement to local Exter-
nal.ResourceDiscovery service.

3.2 MaGate External.ResourceDiscovery service ana-
lyzes and transfers the resource parameters required
by unmatched jobs to local SSL Nest, via local DataS-
torage.

3.3 Local SSL Nest receives the new requests via DataS-
torage trigger mechanism, and propagates ants to
spread over the SSL optimized network for resource
discovery.

3.4 Within pre-defined lifetime, ants sent by local
SSL Nest bring diverse remote SG-Nodes information
back, whose resource capabilities might satisfy the un-
matched jobs’s requirement.

3.5 Local SSL Nest sends the discovered remote
SG-Nodes information to local DataStorage, where
the data could be notified to MaGate Exter-
nal.ResourceDiscovery service.

3.6 MaGate Kernel.MatchMake service filters out the
unsuitable discovered remote SG-Nodes and con-
structs an ordered candidate list for each unmatched
job.

3.7-a If no candidate remote SG-Nodes are available,
MaGate External.ResourceDiscovery service would be
reactivated again with adjusted parameters, such as
processing lifetime, discovery depth.

3.7-b If the candidate remote SG-Nodes are avail-
able, local MaGate Community.OutputRequest service
starts to negotiate with each remote SG-Node to mi-
grate the unmatched job, following the preference ex-
pressed in the ordered list.

3.8-a If no agreement could be achieved after all the
candidate remote SG-Nodes have been negotiated, lo-
cal MaGate External.ResourceDiscovery service would
be reactivated again.

3.8-b Once a job migration agreement is achieved, local
MaGate Community.OutputRequest service will trans-
fer the job to the interrelated remote SG-Node MaG-
ate Community.InputRequest service.

Additional, local MaGate Community.InputResponse
service could be started to monitor the following mi-
gration status data and result sent from the interre-
lated remote SG-Node.

Phase 4 Local SG-Node disposes the scheduling events
from other remote SG-Nodes.

4.1 Once local SG-Node receives a scheduling event, e.g.
remote job migration request, from its MaGate Com-
munity.InputRequest service, it will check the local re-
source capability to ensure qualification for request
acceptance; the checking process is similar with phase
1.3.

4.2-a If local resource is suitable for the re-
ceived scheduling event, MaGate Commu-
nity.OutputResponse service would send the ap-
propriate response made by local Kernel.MatchMaker
service to the request initiator.

4.2-b If local resources don’t fit for the request, MaG-
ate Community.OutputResponse service will ask the
request initiator, whether the request should be can-
celled, or be spreaded out to somewhere else within
specific lifetime.

Phase 5 Local SG-Node community knowledge self-
evolution.

5.1 In some context, the local SG-Node needs to main-
tain the contiguous remote SG-Nodes information,
which could be useful to provide a broad grid com-
munity view to the grid users and applications; mean-
while, contiguous SG-Nodes information also empow-
ers local MaGate the collaborative capability to re-
cover the failure community section.

5.2-a To discover new remote SG-Nodes, MaGate Ker-
nel.LoadAnalyzer service sends the corresponding re-
quests to local External.ResourceDiscovery service,
and stores the discovered results in the local DataS-
torage.

5.2-b In order to keep the discovered remote SG-
Nodes information up-to-date, local MaGate Exter-
nal.ResourceMonitoring service is periodically invoked
to monitor the remote SG-Nodes’s updating via local
SSL Nest ’s ant spreading, and updates the relevant
data within the local DataStorage.

V. Conclusions and Future Work

This paper presented a brief overview of the SmartGRID
framework, as well as the in-depth discussion about each
layer of the solution. The proposed framework focuses
on establishing an interoperable, autonomic, evolutional
grid community to span the differences amongst hetero-
geneous grid environments, based on reactive and reliable
grid infrastructure information provided by swarm intel-
ligence technology. Currently, the design of SmartGRID
framework has been completed, and an ant based signal-
ing prototype has been implemented to verify the network
shrinking and optimizing efficiency.

For this purpose, a high-level scheduling approach
named SRML is designed, which comprises a series of full
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decentralized schedulers - MaGates. The MaGates are
component structured, interoperability emphasized, and
empower the users to load partial scheduling functionalities
and adopt external services, components, and algorithms.

Moreover, a signaling layer named SSL is introduced to
utilize ant based swarm intelligence algorithms for persis-
tent information gathering and load balancing within grid
systems.

Finally, a communication channel named DWI mediates
and decouples SRML and SSL so that grid users could
adopt the layered functionalities separately.

Regarding the future work, we are focusing on the first
prototype of MaGate, especially the Community Compo-
nent. Meanwhile, we are working on the first development
of DataStorage, which links the MaGate and SSL Nest to
construct an integrated SG-Node prototype for validation
and optimization.

Concerning the SSL, development focuses on ant algo-
rithms to support proactive monitoring and resource dis-
covery. Additionally, an improved version of the Solenopsis
framework is being developed.
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