
Karlsruhe Institute of Technology (KIT)
Institute of Telematics

TELEMATICS TECHNICAL REPORTS

OverSwarm: a simulation tool

for biologically inspired

peer-to-peer networks

Amos Brocco
Institute of Telematics, Karlsruhe Institute of Technology (KIT), Germany
brocco@kit.edu

August, 3rd 2011

TM-2011-4

ISSN 1613-849X

http://doc.tm.uka.de/tr/

Institute of Telematics

Karlsruhe Institute of Technology (KIT)

Zirkel 2, 76131 Karlsruhe, Germany



OverSwarm: a simulation tool for biologically

inspired peer-to-peer networks

Amos Brocco
Telematics Institute

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Email: brocco@tm.uka.de

Abstract—The complexity of today’s peer-to-peer networks
has led researches toward novel self-organized approaches in
order to provide robust and scalable management solutions.
Among them, a promising direction is represented by biologically
inspired systems, which mimic the behavior of natural systems
such as insect colonies or swarms of animals (birds, bees, etc.).
In this paper we focus on the evaluation of bio-inspired peer-to-
peer systems built upon the ant colony paradigm, by presenting
a novel framework named OverSwarm. OverSwarm delivers
dedicated support for bio-inspired features such as transparent
agent migration (to mimic the behavior of social insects) and
pheromone trails (to support indirect communication between
agents). Our framework is based on the popular OverSim
simulator, which provides several implementations of the most
current peer-to-peer protocols. To validate our solution, different
case studies are discussed, and a benchmarking is performed to
evaluate the performance of our platform.

I. INTRODUCTION

The increasing scale, dynamicity, and heterogeneity of to-

day’s distributed systems has forced researchers to reconsider

conventional protocols and architectures and investigate novel

self-organizing solutions to reduce management complexity

and costs. Self-organization refers to the ability of a system

to autonomously organize its structure in order to efficiently

fulfill some function [1]. Organization should emerge sponta-

neously from interactions between distributed entities, without

central supervision or control [2], [3]. Nature provides a

wide range of examples of complex systems where simple

interactions between individuals are enough to provide a global

coherent behavior. Computer scientist have been fascinated

by such simple designs that promise scalable and robust

operation, and have tried to replicate the observed behaviors

in order to bring these desirable features in the realm of

computer networks. Algorithms and techniques that replicate

some natural phenomena are typically referred to as bio-

inspired, and several examples such as genetic algorithms or

swarm-intelligence [4] have successfully been employed to

solve complex optimization problems. Concerning computer

networks, bio-inspired solutions have been devised for rout-

ing problems, resource discovery, information clustering and

overlay management. Due to the inherent distributed nature

of these solutions, peer-to-peer communication is well suited

for their implementation. A widely employed bio-inspired

paradigm that has been applied to computer networks is the

one mimicking social insects such as ants and bees [5]. In this

regard, the network represents the environment where insect-

like software agents live, each node represents a nest that

accepts incoming agents and might generate new agents, and

agents themselves are represented by messages exchanged be-

tween nodes. As with other network applications, the behavior

of nodes and the exchanged information is defined by means

of a communication protocol. However, in contrast to more

traditional protocols 1, insect-based bio-inspired protocols are

tightly related to the concept of mobile agent [6]: whereas

in the former the whole logic is implemented inside each

node, and the communication protocol defines what type of

information is exchanged, in the latter the messages them-

selves represent functional entities that are able to actively

operate and move on the network. This paradigm better mimics

real-life insects, which have their own intelligence and can

perform more complex operation than just carry information

or resources around, but is quite different from traditional

networking approaches. In the nature, years of evolution have

ensured that biological processes that have survived up to our

days are robust and reliable enough to sustain life (unsuitable

processes having disappeared). For example, the seemingly

chaotic behavior of an ant nest is in fact self-organized and

ordered and ensures the survival of the colony by taking care

of the foraging process, the reproduction, and the defense of

the territory. On the contrary, bio-inspired systems need to

be verified and validated to ensure that the desired goals are

achieved: whereas a mechanism might work for real insects,

the technical limitations and environmental differences of a

computer system might reveal unexpected deficiencies and

hinder its robustness, reliability or efficiency. An essential

aspect in the development and validation of novel protocols

is thus a detailed analysis of their performance and behavior

under real-world conditions. For example, a routing protocol

must be able to compute and maintain optimal paths across

the network, overcome node or link failures, and ensure

an acceptable delivery rate. Unfortunately, due to technical

or time limitations, it is not always feasible to carry out

exhaustive experimentation on large scale networks composed

of thousand of nodes or to recreate particular failure situations,

1In this paper we use the term traditional to refer to protocols and
algorithms that are not explicitly based on bio-inspired principles, such as
Chord or Kademlia.



such as the ones involving high churn rates, simultaneous dis-

connection of a large part of the network, or denial of service

attacks. A rigorous proof of the robustness and performance of

a network, namely by means of analytical models, involves the

creation of a mathematical representation of the system. This

methodology is often impractical due to the complexity of the

problem and the difficulty of including all the details of real-

world systems. In this regard, network simulators represent a

valid alternative to verify the correctness and robustness of a

network algorithm under controlled conditions. It is important

to note that different validation methodologies do not rule

out each other. An ideal situation involves the creation of

a mathematical model, its verification through simulations,

and a final validation using a real-world testbed. The use of

simulators is nonetheless an important step in the evaluation

of a system. In contrast to a real-world testbed, simulation

tools offer benefits such as reproducibility of results and the

possibility of performing automated tests. However, as pointed

out in [7], not all existing simulators are able to accurately

and realistically reproduce the characteristics of a computer

network, and differences in the outcome of the experiments

can be observed. Furthermore, existing solutions lack support

for bio-inspired approaches, such as the ones replicating the

behavior of ant colonies. To shed some light on how evaluation

of bio-inspired protocols is currently performed, we conducted

a brief survey of several research papers. We focused on

36 scientific publications that present biologically inspired

approaches to networking problems ranging from routing, to

resource discovery and information clustering. In 19 of the

papers the simulation tool is not specified, which often means

that a custom simulator was employed; details of the accuracy

of the simulation (such as, for example, whether a packet

level simulator was used) were also omitted. For wireless ad-

hoc networks 5 papers employed the QualNet [8] simulator.

The use of the widely known ns-2 simulator was reported

in 4 papers, whereas AntHill [9] and PeerSim [10] were

cited in 3 and 2 papers respectively. Finally, OMNeT++ [11],

GloMoSim [12], and Overlay Weaver [13], have been referred

by just one paper each. From these results it is clear that

the effort required to conduct a comprehensive comparison

of different protocols is considerable, as this heterogeneity

hinders consistent evaluation of the proposed solutions and

prevents results published by different authors from being

compared. In this regard, we identified two main issues with

current evaluation methods: first is the lack of a widely used

platform that provides reference implementations for common

bio-inspired and traditional protocols, second is the limited ac-

curacy exhibited by many available simulators when it comes

to simulate network traffic effects such as delays and jitter. The

need for a common evaluation platform mostly arises from the

observation that the majority of research project in the field of

distributed swarm intelligence are still being evaluated using

custom or non-specified simulation tools. Accordingly, our

research is concerned with providing a tool to help researcher

validate bio-inspired protocols that employ ant-like agents.

Consequently, we present here the OverSwarm framework,

which builds on the popular OverSim platform and enhances

it in order to facilitate the development of mobile agent

based systems. Our software takes advantage from several

traditional protocols and an extensive simulation API that are

already implemented in OverSim, as well as from the modular

architecture and graphical tools of the underlying OMNeT++

discrete event simulator. In this paper we detail the features

of OverSwarm and present different case studies that validate

its functionalities and highlight its benefits.

The rest of this paper is organized as follows: Section III

reviews several simulation tools and highlights their main fea-

tures. Section IV presents the architecture of the OverSwarm

framework and details its relation with OverSim. Sections V

to VII detail the implementation of three different protocols

to highlight the benefits of our framework and present the

development methodology behind our work. Section VIII

provides an initial evaluation of the framework, in terms of

simulation performance and memory consumption. Finally,

Section IX summarizes the findings of this paper and provides

some hints on future improvements of OverSwarm.

II. DESIGN GOALS

The development of OverSwarm has been driven by the

following objectives:

• Packet-level simulation: it enables a high-degree of accu-

racy, and can be achieved by means of a discrete event-

based simulator that emulates packet-flows and replicates

communication issues such latencies, jitter, packet lost,

and queuing effects is necessary. Packet-level simulations

allow for a comprehensive analysis of the network over-

head generated by a protocol.

• Modular architecture: facilitates the development of novel

protocols by reducing the effort required for understand-

ing its inner-workings and to replace existing components

with custom ones. The possibility of reusing, extending

and modifying existing modules with minimal impact on

the rest of the platform is also desired. A highly desired

feature concerns interchangeable underlay models, which

enables experimentation with different types of networks

(wired and wireless).

• Common API: reduces code duplication, and simpli-

fies the validation of novel protocols and their com-

parison with other solutions. In particular, a generic

solution for evaluating key-based routing protocols is

required. Furthermore, bio-inspired specific features, such

as pheromone management, must be available to ease the

implementation of swarm-intelligence based protocols.

• Protocol library: eases the comparison with traditional

protocols, namely by providing ready to use implemen-

tation of the most known protocols such as Chord [14],

Pastry [15], Kademlia [16], etc. This requirement is

especially important to determine the advantages and

drawbacks of bio-inspired solutions compared to tradi-

tional approaches.

• Visualization tools: to fully understand the behavior of

a protocol, visualization tools should be provided to



display the information flow across the network during

the simulation.

• Scalability: the simulation must support large-scale sys-

tems with thousands of nodes. In this regard, the simula-

tion tool must limit its memory footprint and provide an

efficient use of the available resources.

• Simulation control: enables the user to stop and resume

the simulation in order to inspect the network and dy-

namically change configuration parameters.

III. RELATED WORK

In this section we review a number of existing network

simulation tools, and we highlight their features. Although our

work is mainly concerned with swarm intelligence protocols,

general simulation platforms will also be discussed. For this

purpose, we distinguish between simulators that focus on

traditional network protocols, and those that provide specific

support for ant-inspired protocols, namely by facilitating their

implementation or by providing bio-inspired oriented features.

Our review is by no means exhaustive; the interested reader

is suggested to refer to more detailed surveys of network

simulators such as [17], [18] or [19].

A. Focus on network protocols

The first set of simulators have a strict focus on traditional

network protocols.

1) OMNeT++: OMNeT++ [11] is a highly modular dis-

crete event simulator that has been widely used to evaluate

networking systems. Several simulation frameworks have been

developed to support packet level simulation of wired and

wireless networks, for example INET/INETMANET [20],

and MIXIM [21]. Modules are written using C++, although

bindings for Java [22] and C# [23] are also available. Among

the benefits of this platform are the graphical user interface

and a high level description language, called NED, for the

definition of compound components and their communication

channels. A graphical interface enables visual feedback during

the simulation and observation of the message flow between

each component and can be useful in the early prototyping

stages; OMNeT++ also support command line execution for

automated testing. OMNeT++ can be freely used for per-

sonal and academic purposes: a commercial version, named

OMNEST, is also available.

2) ns-2: The ns-2 [24] network simulator is a discrete

event simulator targeting network protocols with packet-level

accuracy. Each protocol is implemented using both C++ (for

performance) and OTcl (for flexibility), and can operate on

simulated wired or wireless networks. The main focus of ns-2

are low-level protocols such as TCP, UDP or FTP, nonetheless

it is very popular for simulating application level protocols.

3) OverSim: OverSim [25] builds upon OMNeT++ to

provide a complete framework for the simulation of peer-

to-peer overlay networks. Several structured and unstructured

overlay protocols are already implemented and can be easily

compared. OverSim retains the modular architecture of OM-

NeT++, which facilitates module composition and extension.

Several lifetime based churn models (like Weibull, Pareto, etc.)

are already implemented and can be used to evaluate the ro-

bustness and resilience of peer-to-peer networks under realistic

conditions; furthermore, a generic look-up mechanism based

on the common API [26] eases the validation of structured

overlays that implement a distributed hash-table.

4) PeerSim: PeerSim [10] is a Java based simulator focus-

ing on peer-to-peer protocols. PeerSim supports two simula-

tion models, namely cycle based and event based. Cycle based

simulations trade accuracy for performance, and can manage

very large overlays consisting of hundreds of thousands of

nodes. Conversely, event based simulations provide some level

of realistic packed delivery, while requiring more resources.

Although event based simulations can emulate communication

latency, the details of the underlying network are neglected,

and the resulting simulation remains very simplistic when

compared with more accurate simulation tools.

5) P2PSim: P2PSim [27] is a multi-threaded discrete event

simulator for structured overlays implemented in C++. The

underlay model can emulate different topologies with realistic

latencies and failure models. Several peer-to-peer protocols

are available, for example Chord, Kademlia, Kelips [28], etc.

P2PSim does not offer any kind of graphical visualization tool

to display communication between nodes during simulations.

The latest version of P2PSim dates of April 2005, and develop-

ment seems to have stalled. Furthermore, documentation seems

to be scarce, and no detailed information about the simulator

API is available.

6) Overlay Weaver: Overlay Weaver [13] is a toolkit for

implementing peer-to-peer systems which focuses mainly on

structured overlays such as Chord, Pastry, and Kademlia. Like

OverSim, Overlay Weaver implements a clean architecture

and a common API that facilitate the development of new

algorithms; the system is decomposed into different layers:

an application layer, a service layer (currently implement-

ing a DHT and a multicast interface), and a routing layer

(which consists of routing algorithms and low-level messaging

mechanisms). The current version provides 4 messaging sys-

tems, namely TCP, UDP, single-host emulator and distributed

emulator (both with simulated message delivery latencies).

With single-host emulation, the simulation system provides

message passing between Java threads, whereas with dis-

tributed emulation messages can be delivered to different Java

virtual machines. Overlay Weaver includes a graphical tool to

visualize communication between nodes. A major drawback

of this simulation platform is the fact that it only supports

real-time execution, as such it becomes difficult to replicate

results or to control parameters during experiments.

7) PlanetSim: PlanetSim [29] is a Java framework for over-

lay network simulation that supports the Common API. Net-

work protocols can be implemented following two paradigms:

algorithm model and behavior model. In algorithm mode, each

node embeds all the actions that will be executed throughout

its lifecycle, namely from the its creation and joining of the

overlay until its disconnection or failure. On the contrary,

in behavior model simulations are event based, and separate



classes can be implemented to specify the action to be per-

formed upon reception of a message. Such decoupling enables

a better separation of concerns, but results in a slight increase

of the simulation time compared to the algorithm model.

PlanetSim currently implements only simple underlay models

and aims to be an efficient peer-to-peer simulator rather than

an accurate packet-level simulator; however, according to its

developers, more accurate underlays can be plugged in in order

to account latencies and load network models.

8) GloMoSim: The Global Mobile Information System

Simulator [12], or GloMoSim, is a scalable simulation en-

vironment for wired and wireless networks. GloMoSim sup-

ports heterogeneous communication networks with asymmet-

ric links, traditional protocols such as TCP and UDP, as

well as multi-hop and ad-hoc wireless communication. Its

simulation core is implemented in a parallel C-like language

called PARSEC, which supports discrete-event simulation with

sequential and parallel execution.

9) QualNet: QualNet [8] is a commercial derivative of

GloMoSim, and provides a comprehensive simulation platform

mainly targeted at wireless and ad-hoc networks. QualNet

ships with visual tools that facilitate the design of mobility

patterns and three-dimensional worlds were signal propagation

is accurately simulated. Similar to GloMoSim, the simulation

engine supports parallel execution and is implemented using

the PARSEC language. Tracing and analysis tools are available

to gather statistical data about simulations.

10) PeerFactSim.KOM: PeerFactSim.KOM [30] is a mod-

ular simulator for large scale peer-to-peer systems such as

content distribution networks, streaming applications, or dis-

tributed hashtables. The architecture of the simulator com-

prises four different layers: application, overlay, transport,

and network. The underlying network model can reproduce

different service models with varying degrees of realism.

Along with the simulator, a set of graphical tools enable the

analysis of the behavior of the system and the obtained results.

B. Focus on ant-inspired protocols

Apart from the aforementioned tools, there exist few simu-

lation platforms that explicitly focus on biologically inspired

network protocols. The main drawback of existing solutions

is the lack of an accurate underlay simulation, which hinders

a comprehensive evaluation under realistic conditions.

1) AntHill: AntHill [9] has been developed in the frame-

work of the Bison project to support the development, eval-

uation, and deployment of bio-inspired peer-to-peer applica-

tions. Distributed systems built using Anthill support execution

either on a cycle-based simulator or in a real-world setup

using JXTA [31]. The former enables large scale simulations

with many thousands of nodes, whereas the latter is suited

for deployment and evaluation in real network testbeds such

as PlanetLab [32]. The development of the AntHill project

was stopped in 2002 to focus on the more generic PeerSim

simulator. A well known load-balancing algorithm, named

Messor [33], has been developed using AntHill: ant-like agents

start from overloaded nodes and wander on the peer-to-peer

overlay to discover least loaded peers and initiate a balancing

operation. AntHill does not simulate the underlay network,

lowering the accuracy of the simulation. On the other hand,

such simplicity enables fast simulation and thus large scale

experiments with thousand of nodes.

2) Solenopsis: Solenopsis [34] is a distributed middle-

ware that focuses on swarm-intelligence based protocols. The

platform provides a domain specific language to describe

ant-agent’s behavior and to control the execution on each

node. The framework does not distinguish between simulation

and deployment mode. The only difference relies in the

number of virtual nodes that area managed by a host: in

simulation mode several nodes are typically run on a single

host, whereas in deployment mode a one-to-one mapping is

common. Communication latency can be introduced by means

of delayed message delivery. The framework presented in this

paper inherits some features introduced by Solenopsis, such

as the focus on ant-based protocols and the agent description

language.

3) Test-bed platform for bio-inspired distributed systems:

The distributed middleware presented in [35] provides a

general-purpose execution environment for self-organized

agent systems. In contrast to the aforementioned platforms the

focus of this test-bed is put on real distributed systems instead

of simulations. Agents can migrate between nodes and several

deployment policies are implemented. Each agent can specify

its requirements in terms of computational resources, and the

systems provides him with a list of suitable nodes.

4) Swarm Simulation System: The Swarm Simulation Sys-

tem [36] focuses on the evaluation of coordination mechanisms

in multi-agent systems. Swarms represent complex adaptive

systems; each swarm consists of a collection of agents execut-

ing some scheduled actions. The platform supports hierarchical

and nested models with agents composed of swarms of other

types of agents. The system is meant as a tool for studying

general complex systems, and lacks support for networking

systems simulation.

5) MASS: The Multi-Agent Simulation Suite [37] provides

a user-friendly environment for the development, simulation

and analysis of agent-based systems. MASS includes graphical

tools to assist users with limited programming skills in the

creation of complex multi-agent systems. No network-oriented

features are available.

6) NetLogo: Like the previous two examples, NetLogo [38]

is not a network-oriented simulator, but provides a generic

programmable visual environment to experiment with com-

plex systems. An extensive library of examples ranging from

biology models to social networks is available. NetLogo can be

used as a tool to understand the dynamics of complex systems.

C. Discussion

An essential feature for achieving an accurate validation of

network protocols and realistic results is packet-level simu-

lation, which involves reproducing transmission and delivery

delays of each packet, queuing effects, jitter (i.e. variations

of the latency), and channel bandwidth. Moreover, in order to



replicate realistic usage conditions, churn and traffic patterns

should be simulated: in this respect, many of the reviewed

simulators also fail to provide detailed statistics about churn,

node failures, and message delivery rates. Concerning the

simulation of bio-inspired systems, it is our opinion that

explicit support for mobile agents by the simulation platform

facilitates the implementation and analysis of complex multi-

agent systems. Our review of the existing simulation platforms

has highlighted the lack of realistic network conditions in

swarm oriented tools, and missing support for mobile agent

protocols in network oriented ones. It is clear that achieving a

higher level of realism has an important impact on the perfor-

mance of the simulator, nonetheless we argue that an optimal

trade-off between accurate results and simulation overhead is

possible and should be attained. Hence, with respect to the

requirements detailed in the previous section, our research

goal is the development of such kind of tool, to provide both

accurate results in terms of network simulation and ease of

use concerning complex system development. To achieve our

goal we base our solution on an existing platform, having

determined that the one that mostly fulfills the aforementioned

requirements them is OverSim [25]. OverSim already provides

a rich set of features to facilitate accurate evaluation of peer-to-

peer protocols, such as churn models, realistic underlays and

packet-level simulation. Furthermore it’s modular architecture

is easily extended to support bio-inspired protocols.

IV. OVERSWARM FRAMEWORK

The OverSwarm platform focuses on facilitating the im-

plementation and evaluation of peer-to-peer systems based

on the ant colony paradigm. In contrast to other platforms

with similar goals, OverSwarm is not a stand-alone product,

but extends a popular and widely used peer-to-peer simulator

called OverSim. Our choice not to develop from scratch is

motivated by the fact that OverSim already includes a set

of tools that eases the validation of new protocols, such as

a protocol library that implements a wide range of protocols

(Chord [14], Kademlia [16], etc.) and an API to simulate churn

and resource discovery. In this section we provide a detailed

view of the framework and highlight its design choices and

benefits.

A. Integration with OverSim

OverSwarm has been designed to integrate well with the

OverSim architecture while remaining a separate library. None

of the existing modules require modification of the OverSim

core library in order to enable the execution of swarm based

protocols. Figure 1 illustrates the architecture of OverSim. The

platform is divided into three functional layers, namely the

application, the overlay, and the underlay levels. The appli-

cation layer is further divided into three tiers that implement

high-level services such as XML-RPC. Both structured and

unstructured overlays are supported, although a major focus

is put on the former, as underlined by the Common API

interface between the top-most layers of OverSim. Several

underlay models are available, namely INET and ReaSE

[39] (to simulate network with realistic latencies and traffic

patterns), Simple (which replicates latencies based on Internet

measurements), and Single Host (used for real world deploy-

ments). OverSwarm currently targets both the overlay and the

application layers.

Fig. 1. OverSim architecture (reproduced under permission from the authors)

1) Stand-alone overlay protocols: OverSwarm can be used

to develop stand-alone overlay protocols entirely based on the

paradigm of insects colonies. To facilitate the development

of such protocols a template class, which defines a skeleton

module, is available. An example is presented in the following

section.

2) Hybrid overlay protocols: Hybrid solutions combine

traditional peer-to-peer protocols, such as Chord, and novel

bio-inspired mechanisms based on ant-like agents. One such

examples is Self-Chord [40], which will be discussed in detail

in the following of this paper.

3) Application protocols: Application protocols execute on

top of an existing overlay and can exploit the functionalities of

the latter such as topology management or key-based routing.

B. Separation of concerns

Mobile, insect-like agents operate separately from nodes,

and their behavior could define a completely different com-

munication protocol. Accordingly, OverSwarm is based on a

clear separation of concerns and a clear distinction between

the activities of a mobile agent and those of a node. To

achieve this, the implementation of agents is defined separately

from C++ modules using a domain specific language similar

to Lisp. Ant agents can interact with nodes, and invoke

methods exported from C++ in order to access the resources

made available by each peer. This decoupling simplifies the

development and prototyping of protocols, because agents’

behavior does not interweave with the operation of a node,



and facilitates the implementation of bio-inspired mechanisms

alongside with traditional protocols. The high-level nature

of the language abstracts from the low-level concerns of

C++ such as memory management. Moreover, from a future

development perspective, this choice enables multiple targets

to be generated from a single protocol definition.

C. Toolchain

For performance reasons the agent behavior is not inter-

preted, but compiled to C++ instead. For this purpose, the

OverSwarm’s toolchain comprises a compiler that translates

the description of an agent to C++ code that can be embedded

into an OverSim module. In order to support strong and trans-

parent migration the generated C++ code contains instructions

that operate on a stack object (whose implementation is part of

OverSwarm’s library). Upon migration, the stack is serialized

and transferred to the target node; if simulations are run

on a single machine, OverSwarm also supports a migration

procedure that does not require the serialization of the agent

state, resulting in better overall performance.

Fig. 2. OverSwarm toolchain

The compiler generates three header files which provide

methods executing the agent’s behavior and the necessary

prototypes that need to be included in the C++ module class

definition. Because agents’ behavior is compiled into a native

C++ OverSim/OMneT++ module, the OverSwarm toolkit is

only required if the behavior of the agents is modified.

Figure 2 depicts the toolchain and the steps required for

compiling the agents’ behavior into an executable simulation.

The generated C++ is not meant to be human-readable, as it

contains instructions for a stack machine: a stack object (which

represents the runtime state during execution of an agent) can

be serialized, transmitted, and deserialized during migration.

The serialization format is platform independent, and is based

on Bencode, the encoding used by BitTorrent [41]; accord-

ingly, it is technically possible to generate code in a language

different from C++, provided that a re-implementation of the

core framework libraries in the target language is available. A

library provided with OverSwarm includes several functions

for the manipulation of the stack as well as of the available

value types. In this regard, the supported types are: numbers

(integers, single precision floating point, long integers, and

double precision floating point), strings, lists (implemented

as dynamic arrays), maps (hash-tables with string keys), and

lambdas (to implement closures). Automatic memory manage-

ment is achieved by wrapping each type using a shared pointer

(shared_ptr, as defined by C++ 0xx TR1): wrapping and

unwrapping methods are provided to simplify the conversion

between OverSim and OverSwarm types. OverSim modules

can define methods that can be invoked by agents, conversely

C++ code can start the execution of agents.

D. Bio-inspired related features

OverSwarm provides several features to facilitate the imple-

mentation of bio-inspired protocols.

a) Strong, transparent migration: Protocols based on the

paradigm of social insects depend on the behavior of each

individual (in our case a software agent) and its interaction

with other individuals or the environment. In contrast, tradi-

tional network protocols are defined by the operation of each

node and by the messages exchanged between peers. Existing

simulation framework, such as OverSim, are based on a pro-

gramming model that focus on the implementation of the latter

type of protocols; as such, the implementation of agent-based

biologically inspired protocols can be cumbersome. In this

regard, an essential feature that enables seamless development

of ant-inspired protocols is strong and transparent migration

of agents. On one hand, strong migration is concerned with

transferring the whole runtime state of an agent from one node

to another: the system must be able to suspend the agent’s

execution, transfer all the necessary data to the target peer,

restore the runtime state, and finally resume execution. On the

other hand, transparent migration facilitates the development

of an agent by removing the need for explicit serialization

and deserialization of any local data maintained by the agent.

OverSwarm implements these features and makes them avail-

able through primitives of the domain specific language used

to program agents’ behavior. Support for strong, transparent

migration motivated our decision of implementing a domain

specific language to describe the behavior of ant agents.

b) Pheromone management: An essential requirement

concerns the availability of generic classes and an API fulfill-

ing the basic task of managing pheromone trails. Pheromone

trails replicate the indirect communication mechanism (called

stigmergy) used by real ants which leave chemicals in the envi-

ronment to signal paths toward food sources. Other individuals

in the colony can sense existing paths and decide to follow

them and/or reinforce their concentration. Pheromone evapo-

rates with time, and completely disappears unless reinforce-

ment takes place. A number of ant-inspired software systems

employ artificial pheromones to achieve their aim, accordingly

it makes sense to provide support within the framework.

OverSwarm provides a generic and flexible Pheromone class

that supports different reinforcement and evaporation patterns,

such as linear and exponential. Additional patterns, such as

the ones discussed in [42], can be easily implemented.

E. Other features

Beside bio-inspired features, OverSwarm introduces some

utility functions that ease the evaluation of protocols for

unstructured networks. In particular, methods to compute some

topological properties such as the diameter, radius, average

path length, and clustering coefficient of the overlay have been

implemented.



F. Protocol definition

The behavior of the agents implements a communication

protocol that is defined is an .osw file, as shown in the

example in Figure 3. The preamble contains the protocol name,

which must match the name of the class where the generated

C++ will be included.

protocol "Foo" {

import for "oversim" {

"trail->reinforce" as "reinforce"

}

ant "Bar" {

behavior {

(reinforce "trail1")

}

}

}

Fig. 3. Example protocol definition

Within the import section the mapping between C++

methods and Lisp ones can be made. In the example, the

method reinforce of the object referenced by the class field

trail can be invoked by calling the reinforce function.

Methods defined within the C++ module that can be accessed

by the agent must implement a valid signature. Any number

of ants can be defined by means of ant blocks: each ant has

its own name and can define its own behavior.

V. CASE STUDY: SELF-CHORD

OverSwarm benefits from its seamless integration with

OverSim which simplifies the extension of existing traditional

protocols with bio-inspired features by means of ant-inspired

mobile agents. In this context, existing approaches can be

complemented and improved instead of being completely

reimplemented following a new paradigm. A good example of

this methodology is Self-Chord [40], which provides a self-

organized extension to the popular Chord protocol. Chord is a

peer-to-peer protocol that implements a distributed hash-table,

with information stored in a ring-structured overlay. Nodes and

resources are assigned with unique identifiers (hashes of their

address or content), and each node is responsible for managing

an interval of the resources key space. Identifiers of nodes and

of resources are tightly related, hence a key look-up operation

resolves to a routing of the query toward the corresponding

node. With Self-Chord this strong link is avoided, as resources

are arranged in a self-organized way on the available peers

by means of ant-like agents. Each agent moves resource

identifiers as to maximize the similarity among identifiers

stored on the same node. In the end, a global ordering of the

resource identifiers is achieved on the ring. Self-Chord exploits

a large part of the original Chord protocol (for example for

overlay maintenance), but implements a different storage and

look-up mechanism that aims at improving balancing over the

overlay and at increasing the robustness of the system.

A. Overlay Management

The overlay management remains unchanged, and is

achieved using the original Chord protocol. Chord employs a

ring structured topology where each node is assigned a unique

identifier randomly chosen from a 160 bit key space. The

protocol maintains a global ordering of the nodes on the ring

according to their identifier. Each node knows its successor

and predecessor on the ring, and maintains a finger table with

the addresses of additional nodes to quickly forward messages

across many hops (at increasing distances).

B. Resource Management

In contrast to the traditional Chord protocol, Self-Chord

does not map resources to unique identifiers. More specifically,

resource identifiers can be defined over a different key space

than nodes. To determine where a resource should be stored,

each node computes an average value of the identifiers of

the resources already present on the node and on neighboring

peers. This average, called centroid is used by agents as a

reference for clustering resource identifiers in a self-organized

way: in a stable overlay, centroids are ordered along the ring

and an equal distance can be observed between centroids on

consecutive peers.

C. Bio-inspired agents

Each node periodically creates new bio inspired agents that

wander across the ring. On each visited peer, the agent looks

for the resource identifier which has the least similarity with

the current centroid. With a probability proportional to the

distance between it and the centroid, the agents picks one

of the resources. The agent tries to relocate the resource

to a node whose centroid is as close as possible as the

resource identifier. Accordingly, the direction of the agent on

the ring is determined as follows: if the identifier is greater

than the centroid, the agent continues by migrating toward

the successor on the ring, otherwise the agent goes to the

predecessor. Although each agent operates in an independent

manner, the global behavior of all agents results in a global

ordering of the centroids on the ring. This ordering is essential

for the look-up process to work, as queries need to estimate

the position of the resource by computing the number of hops

in the overlay based on the difference between consecutive

centroids.

The actual implementation using OverSwarm’s agent pro-

gramming language reflects the aforementioned description.

Figure 4 lists an excerpt of the code. The body of the agent

is a while loop that is repeated as long as the maximum

number of steps (hops in the overlay) is not reached and the

agent is not carrying any resource. The doPick and doDrop

functions are used to implement the aforementioned behavior.

The shouldDrop function (not detailed in the example code)

is used to determine if the carried object is to be dropped

on the current node, according to a probability proportional

to the similarity between the resource and the local centroid.

Conversely, the shouldPick function determines if a re-

source is to be pick up by the agent. In order to speed up

the ordering in the overlay initialization phase, agents can

migrate in two ways: linearly and logarithmically. In linear

mode agents follow the predecessor and successor links on the

ring in order to reach a suitable node for dropping. Conversely,



(define (doPick) (synchronized

(var c (getCentroid))

(foreach r in (getResources) (begin

(if (and

(shouldPickA c r direction)

(shouldPickB c r)) (begin

(set! resource (pick (key r)))

r

(break)))))))

(define (doDrop) (synchronized

(if (shouldDrop (getCentroid) resource) (begin

(drop resource)

(set! resource nil)

(end)))))

(while 1 (begin

(if resource (doDrop) else (doPick))

(if (= step 0)

(if (not resource)(end))

else

(set! step (- step 1)))

(if (and LOGARITHMIC_HOPPING resource) (begin

(migrate (getNextHop (key resource))))

else (begin

(if (= direction LEFT)

(migrate (getPredecessor))

else

(migrate (getSuccessor)))))))

Fig. 4. Excerpt from the Self-Chord agent

in logarithmic mode, the addresses stored in the finger table

are employed to quickly reach distant peers. The logarithmic

mode helps speeding up the convergence of the system toward

a stable ordering of the resource keys on the ring; on the other

hand, linear mode is less susceptible to instabilities and is more

suitable for systems that are almost ordered. For these reasons,

nodes start by creating agents that travel in logarithmic mode;

when a node detects that the network is stable enough, agents

are instanced with linear mode in order to avoid instabilities.

D. Look-up process

Because resource identifiers are not tied with peers’ identi-

fier, the look-up process of Self-Chord is completely different

from the original Chord protocol. Whereas in the latter a

routing toward the peer whose identifier matches that of the

queried resource is enough to determine a path in the overlay,

the self-organized nature of Self-Chord requires a different

approach. First, the direction of the query (either forward or

backward in the ring) is determined by comparing the query

with the centroid on the current node. Subsequently the node

determines the number of steps that are necessary to reach

the target peer and the node, by computing the difference

between consecutive centroids in the neighborhood of the peer.

Finally, the target peer is chosen using either the successor

and predecessor links or the finger table. If the target is not

reached, further forwarding following the same principle could

be performed.

VI. CASE STUDY: BLÅTANT

BlåtAnt [43] is an overlay management protocol which aims

at maintaining an optimized topology to reduce the cost of

broadcasting a message to all peers. BlåtAnt employs differ-

ent species of ant-like mobile agents that are assigned with

different tasks such as discovering distant nodes, connecting

and disconnecting peers, or signaling the liveness status of a

node. The overlay maintained by this protocol can be classified

as self-structured, because the topology is maintained in an

adaptive way in order to fulfill certain criteria, namely an

upper bounded diameter and a lower bounded girth (length of

the smallest cycle). In this section we consider the -S variant

of the algorithm, as detailed in [44].

A. Optimization process

The overlay optimization process is controlled by two

simple rules that determine the creation of new logical links

and the destruction of existing ones. The goal of the link

creation phase is to limit the diameter of the network according

to an optimization parameter D. More specifically, a new link

is created between two peers if a distance greater than

2D − 1

is observed. Conversely, removing links aims at breaking

up cycles in the topology that contribute in increasing the

retransmission rate when the overlay is flooded with queries.

The rule for breaking up cycles states that two neighbor peers

must be disconnected if there exist an alternative path that

connects them whose length is less than

2D − 3

hops. Observation of distances between peers as well as

connection and disconnection are performed by means of

ant-like agents. In order to detect node failures and abrupt

disconnections in high-churn situations, each agent leaves

pheromone trails in the network while migrating; the concen-

tration of the pheromone determines the liveness of nodes and

enables the system to react accordingly. Two kind of trails,

associated with each neighbor on each node, are employed:

beta and gamma. Beta trails are reinforced by incoming ants,

and their purpose is to track communication originating at

neighboring nodes; if a beta trail completely evaporates a

peer can deduce that the corresponding neighbor failed (i.e.

abruptly disconnected) or that some communication problem

exists, and initiate a recovery procedure to connect with some

other peer. Conversely, gamma pheromone trails are used for

two purposes: on one hand to ensure that all paths in the

overlay are equally explored by Discovery agents (as such

ants most likely follow the lowest concentration trails); on the

other hand, low gamma concentrations trigger ping traffic on

the corresponding path to signal aliveness of the node.

B. Agents

BlåtAnt employs different species of ant-like agents. We

report and discuss here the behavior of the most significant

ones.

1) Discovery: Discovery agents are periodically instanced

on each node with some probability. Each agent wanders on

the overlay for a predefined maximum number of steps: on

each peer the identifier of the node (typically its IP address

and port) is stored into a bounded size vector. Subsequently,



(while 1 (begin

(if (<= steps 0) (break))

(if (inform vector) (clear vector))

(push vector (getThisNode))

(if (> (len vector) vectorlength) (erase vector 0))

(var neighbors (getNeighbors))

(remove neighbors previous)

(foreach v in vector

(remove neighbors v))

(if (= (len neighbors) 0) (begin

(set! neighbors (getNeighbors))

(set! vector [])))

(if (< (random) kappa)

(set! nextStep (getLowestGammaTrail neighbors))

else

(set! nextStep (choose neighbors)))

(if nextStep (begin

(set! previous (getThisNode))

(set! steps (- steps 1))

(if (not (migration nextStep)) (end))))))

Fig. 5. Discovery Agent

(virtual $target)

(var source (getThisNode))

(if (migrate $target) (begin

(var d (getEstimatedDistance source))

(if (and (> d 0) (< d (- (* 2 (D)) 1 ))) (end))

(var isAcceptedConnection (connect source))

(if isAcceptedConnection

(if (migrate source)

(connect $target)))))

Fig. 6. Optimization Link Agent

a candidate target node is chosen among the neighbors of

the current peer, such that previously visited peers are not

considered. If no candidate is available, all neighbors are con-

sidered. With a given probability k, the agent migrates to the

neighbor associated with the lowest concentration of gamma

pheromone, otherwise it migrates to a random neighbor.

The behavior of the agent can be easily implemented with

OverSwarm, as shown in Figure 5. The steps variable keeps

track of the current number of hops traveled in the overlay.

The addresses of visited nodes are stored in a dynamic list

vector. Each time a new address is added to the list, its

size bounds are check, and exceeding information is eventually

removed. Selection of the neighbor with the lowest gamma

pheromone concentration is implemented as a separate func-

tion named getLowestGammaTrail.

2) Optimization Link: Optimization Link agents are used to

create new logical links between nodes in order to optimize

the topology of the overlay. The ant-like agent starts from

the node requesting the connection, and migrates to its target

(Figure 6). If the conditions on the hop distance between

the two nodes is fulfilled (as determined by local cached

information on the target node) the logical link is created and

the agent migrates back to the source peer to complete its

operations. The getEstimatedDistance function returns

the estimated number of hops separating the current node

from the source (according to locally cached information),

whereas the connect function creates a new logical link to

the specified node and initializes the corresponding pheromone

trails.

3) Unlink: Unlink agents are used to remove logical links

between nodes as result of the girth optimization rule or when

a node wants to disconnect from the overlay. The Unlink agent

removes the logical link information on both nodes and clears

the associated pheromone trails.

4) Construction Link: In contrast to Optimization Link

agents, Construction Link ones are used to initially connect

new peers to the overlay as well as to recover connectivity in

the event of a failure. In this regard, the logical links created

by these agents have no optimization purposes.

VII. CASE STUDY: OZMOS

As a last example we consider the implementation of a

swarm-based application protocol executing on top of an exist-

ing overlay. More specifically we discuss the Ozmos protocol

[45], which can be used to balance load or equally distribute

resources across an overlay of nodes connected by means

of a Chord overlay. In contrast to the previous examples,

Ozmos agents are fully independent from overlay management

agents, and their behavior is focused on relocating tasks among

available resources. In contrast to other existing approaches

Ozmos supports heterogeneous resources and tasks.

A. Concentration

The actual load on a node does not only depend on the

number of tasks that are scheduled but also on the capability of

the node itself. To determine when Ozmos should relocate jobs

a normalized load value, called concentration, is computed

by each node. The concentration of a node is proportional

to its load, but is computed according to both the length of

the execution schedule (i.e. total runtime), and the hardware

capabilities (i.e. number of processors and relative speed) of

the node. Each node receives periodic notifications about the

concentration of its predecessor and successor; furthermore, a

notification from a random node is also employed to improve

the load balancing process. If no notification is received, the

corresponding concentration value is assumed to be infinite.

B. Resources

In order to support load-balancing on heterogeneous re-

sources the unique identifier assigned to each node by Chord is

modified to embed information about the resources shared by

the node. More specifically, Ozmos groups nodes into different

categories depending on their hardware (i.e. architecture) and

software (i.e. operating system) profile. The resource class is

included in the node identifier such that all nodes belonging

to the same class are adjacent on the ring. Tasks are similarly

assigned unique identifiers that embed the class of resources

required for their execution. Notification agents are exchanged

only between nodes of the same class.

C. Agents

Ozmos employs three different types of ant-like agents in

order to exchange notifications about concentration levels,

to relocate tasks between nodes of the same resource class,

and to relocate tasks to nodes suitable for their execution.

Agents have access to local data structures, such as the local

concentration, the scheduling queue, as well to information



about the underlying Chord overlay such as the address of the

predecessor, the successor list, and the finger table.

1) Notification agent: Notification agents are exchanged by

nodes in order to share concentration levels and information

about the performance of the system (to enable normalization

of the concentration values). Nodes periodically send a Notifi-

cation agent to their predecessors, successors, and to randomly

chosen nodes of the same resource class (selected from the

finger table) called probes. To prevent load balancing between

incompatible nodes in a heterogeneous system, notifications

are not sent to nodes whose resource class is different than

that of the origin node: this conditions can be easily verified,

because the resource class is encoded within the node’s

identifier.

(migrate (next))

(doDetermineDirection)

(while 1 (begin

(set! steps (- steps 1))

(if (< steps 0) (break))

(if (or (< (getConcentration) (nextConcentration))

(< steps 0)) (begin

(foreach task in $tasks

(schedule task))

(end))

else

(migrate (next)))))

Fig. 7. Osmosis Agent (excerpt)

2) Osmosis: Osmosis agents perform rescheduling of the

tasks in order to achieve a global load balancing of the grid

system. When a node detects that neighbor peer has a lower

concentration (considering a minimum threshold), it creates

an Osmosis agent to reschedule some tasks. The behavior of

the agent can be implemented using OverSwarm programming

language as shown in Figure 7. An agent receives a list of

tasks $tasks to be rescheduled from the source node, and

a direction to follow in the ring (which determines, at each

step, the next hop); if the agent is sent to a probe the direction

is determined by following the lowest concentration after the

initial migration. The agent continues traveling in the ring as

long as the next peer provides a lower concentration than the

current peer, until a maximum number of steps have been

traveled.

3) Relocation: If incompatible tasks are submitted to a

node, Relocation agents are created to reschedule these tasks

on an appropriate resource. Figure 8 provides the basic be-

havior of an agent. The agent receives a list of tasks from

the source node, and stores them in the $tasks variable.

The jump function is then used to invoke Chord’s key-based

routing and migrate to a node responsible for the class of the

tasks to be relocated. The key corresponds to the identifier

of first node in the given resource class (i.e. a null identifier

whose prefix is replaced by the class identifier).

VIII. EVALUATION

In order to evaluate the performance of our framework we

implemented several simple protocols using both our agent

(jump (class $tasks))

(foreach task in $tasks

(schedule task))

Fig. 8. Relocation Agent (excerpt)

programming language, OverSim, and PeerSim. The goal of

these experiments was to measure the simulation time as well

as the memory consumption. All protocols are based on mobile

agents that wander randomly on the network while collecting

some information: although their behavior is extremely simple,

the performed operations reflect common usage cases. In our

simple setup we assume that each node knows each other peer

in the overlay.

A. Protocol A

The first protocol is based on a simple agent that wanders

some random steps on the overlay collecting data. The agent

starts on a node and subsequently migrates to a random peer.

Subsequently, with a probability of 50% the node further

migrates to a random peer, otherwise the address of the current

node is stored in the variable previous and a migration

toward a random node takes place. Finally, the result of the

call to function doSomething is stored in variable result,

the agent migrates back to the previous node, and either calls

doThis or doThat based on the value of result.

(migrate (getRandomNode) 256)

(if (< (rand) 0.5) (begin

(var previous (getThisNode))

(migrate (getRandomNode) 256)

(var result (doSomething))

(migrate previous 256)

(if (> result 0)

(doThis)

else

(doThat)))

else

(migrate (getRandomNode) 256))

Fig. 9. Example protocol A

Figure 9 represents the behavior of the agent as imple-

mented using OverSwarm. The migrate function is used

by the agent to migrate to another peer: its execution is

hence suspended and is resumed on the target node. The

getRandomNode function returns the address of a random

node in the overlay, whereas the getThisNode function is

used to obtain the address of the current node. The corre-

sponding C++ methods that map to these functions are listed

in Figure 10: the blob function is used to serialize OverSim

types into a byte stream that can be transported by the agent.

The additional numeric parameter 256 passed to the migration

function defines the size of the payload, and is used by the

underlay model to reproduce accurate transmission delays.

B. Protocol B

The second protocol employs an agent with two states:

forward and backward. In the forward state the agent wanders

randomly on the network, and the address of each visited

peer is stored in a vector that is carried by the ant. After



OvSwValue::Ptr ProtocolA::getRandomNode

(void* owner, OvSwStack* st)

{

TransportAddress* t =

globalNodeList->getRandomAliveNode();

return blob(*t);

}

OvSwValue::Ptr ProtocolA::getThisNode

(void* owner, OvSwStack* st)

{

TransportAddress* t = &thisNode;

return blob(*t);

}

Fig. 10. Example protocol A, C++ methods

a predefined number of hops, the state of the agent switches

to backward: the agent goes back on its steps by migrating

toward the nodes stored in its vector. Figure 11 lists the agent

code as implemented using OverSwarm, whereas 12 details

the message dispatch method as implemented with OverSim.

Whereas in the latter the two states of the agent must be

explicitly defined, with OverSwarm the behavior of the agent

remains linear.

(migrate (getRandomNode) 256)

(var visitedNodes [])

(var remainingHops 5)

(while (> remainingHops 0) (begin

(push visitedNodes (getThisNode))

(set! remainingHops (- remainingHops 1))

(migrate (getRandomNode) 256)))

(while (not (empty? visitedNodes)) (begin

(migrate (pop visitedNodes) 256)))

Fig. 11. Example protocol B (OverSwarm)

void ProtocolB::handleProtocolMessage

(ProtocolBMessage* msg)

{

switch(msg->getState()) {

case 0:

if (msg->getHops() == 0) {

msg->setState(1);

} else {

msg->setVisitedArraySize(

msg->getVisitedArraySize()+1);

NodeHandle nh = getThisNode();

msg->setVisited(

msg->getVisitedArraySize()-1, nh);

msg->setHops(msg->getHops() - 1);

sendMessageToUDP(*getRandomNode(), msg);

break;

}

case 1:

if (msg->getVisitedArraySize() > 0) {

TransportAddress target =

msg->getVisited(

msg->getVisitedArraySize()-1);

msg->setVisitedArraySize(

msg->getVisitedArraySize()-1);

sendMessageToUDP(target, msg);

} else {

delete msg;

}

break;

default:

delete msg;

break;

}

}

Fig. 12. Example protocol B (OverSim)

Fig. 13. Example Protocol A - Simulation Time

C. Evaluation methodology

For the evaluation overlays of different sizes have been

considered: 100, 1000, and 10000 nodes. Each simulation run

reproduces 6 hours of network activity; for simplicity a fully

connected overlay where each node knows all other nodes

was considered. Experiments were performed on a machine

running Ubuntu Linux 8.04 (64 bit) equipped with an Intel

Core 2 Duo L7500 processor at 1.6 GHz and 2 GB of

memory. Every 2 seconds each node deploys an agent which

then behaves according to its species. For both OverSim and

OverSwarm an underlay model based on Internet latency mea-

surements was employed: the average latencies between peers

is about 100ms. With PeerSim a simple underlay model with

random latency between 50ms and 150ms was considered.

The accuracy of the overlay model in OverSwarm/OverSim

is higher than in PeerSim, as the latter does not consider

queueing nor bandwidth effects.

D. Results

In both protocols, PeerSim benefits from its simple underlay

model, and is the fastest among the three simulators, running

2.5 to 4.7 times, and 7 to 12 time faster than OverSim

in Protocol A (Figure 13), respectively Protocol B (Figure

15). With both OverSim and OverSwarm the performance

is affected by the additional underlay characteristics that are

simulated, namely jitter and queuing effects. The additional

abstraction layer introduced by our bio-inspired framework to

achieve transparent migration further reduces the performance

by approximately a factor of 2.3 in the test setup for protocol

A, and 2.8 for protocol B; still our framework enables faster

than realtime simulations, with a speed-up factor of 4 in the

10000 node experiment for protocol B. Moreover, by compar-

ing the results obtained with the two considered protocols, we

notice that the performance penalty factor is neither heavily

influenced by the behavior of the agent nor by the scale of the

simulated system.

Regarding memory (Figures 14 and 16), PeerSim shows

a more parsimonious usage, thanks to its simplified simu-

lation and underlay models. In particular, PeerSim message



Fig. 14. Example Protocol A - Memory Usage

Fig. 15. Example Protocol B - Simulation Time

transmission only involves passing a reference to Java object

between nodes, whereas in OverSim packet encapsulation

is required to achieve accurate simulation of the underlying

network. OverSwarm consumes a similar amount of memory

as OverSim, meaning that the agent abstraction has little

impact on this measure. These benchmark show that the price

to be paid for an accurate simulation model and for bio-

inspired features represents a sensible overhead, nonetheless

large simulations with faster-than realtime performance are

still possible. Moreover, concerning the OverSwarm platform,

we argue that the overhead is also outweighed by several ben-

efits such as strong transparent migration support and a high-

level agent description language. Both these features simplify

the development and readability of ant-inspired protocols and

enable faster prototyping.

IX. CONCLUSIONS

In this paper we presented OverSwarm, a framework and

simulation platform specifically designed for the development

and evaluation of swarm-intelligence peer-to-peer protocols

built on the ant-colony paradigm. These protocols are typically

based on mobile agents that mimic the behavior of real insects,

Fig. 16. Example Protocol B - Memory Usage

for example in order to determine best paths in the network. To

facilitate their implementation a domain specific language that

supports transparent strong migration is proposed. OverSwarm

promotes a clear separation of concerns between services

implemented by each peer ant the behavior of agents, and

integrates with the OverSim platform to enable accurate

simulation of peer-to-peer overlays with different types of

underlay networks. In contrast to existing frameworks for the

simulation of bio-inspired distributed systems, OverSwarm

exploits OverSim’s features to provide a detailed packet-

level simulation, which replicates network phenomenons such

as churn, queueing effects, and jitter. Our solution can be

used to develop new overlay protocols, hybrid protocols that

extend traditional systems with bio-inspired features, as well

as application protocols that execute on top of an existing

overlay. The implementation already includes some examples

of bio-inspired protocols, and provides an API implementing

pheromone trails. Existing protocols implemented by Over-

Sim, such as Chord, can be easily compared with bio-inspired

analogues. Current research focuses on developing a rich set

of distributed algorithms based on the ant colony paradigm,

and a comprehensive comparison between traditional and

bio-inspired solutions. Further integration with OverSim is

planned as future work to better support evaluation of both

structured and unstructured overlays. Furthermore, because

the code generated by the compiler does not link directly

to OverSim, an adaptation of our framework to work with

other simulation platforms such as MIXIM or INETMANET

is envisioned. OverSwarm is actively developed and released

under an open source license, and can be downloaded from

http://syscall.org/doku.php/overswarm.
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